Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 195-201     DOI: 10.6046/gtzyyg.2018.02.26
|
Spatial-temporal pattern analysis of the vegetation coverage and geological hazards in Yanchi County based on dimidiate pixel model
Xiaodong ZHANG1,2(), Xiangnan LIU1(), Zhipeng ZHAO2, Yinxin ZHAO2, Yuxue MA2, Haiyan LIU2
1. School of Information Engineering, China University of Geosciences(Beijing), Beijing 100083, China
2. Ningxia Geological Survey Institute, Yinchuan 750021, China
Download: PDF(2758 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on dimidiate pixel model and using Landsat TM/OLI remote sensing images of 4 periods in 25 years (1989—2014) and geological hazards investigation data, the authors analyzed the characteristics of vegetation spatial-temporal pattern in Yanchi County by GIS and discussed the relationship between vegetation coverage and geological hazards. The results showed that the vegetation coverage of study area took on the features of relatively high vegetation coverage in the east and relatively low vegetation coverage in the west. The average vegetation coverage was on the low side generally and presented the characteristics of increase-decrease-increase; correspondingly the vegetation appeared the repetitive process of restoration-degeneration-restoration but had a tendency of recovery as a whole, with restoration distributed in the southeast and northwest and degeneration in the mid-west. Geological hazards point density was high in the south and low in the north, which suggests that the hazards points were concentrated in the south and dispersed in the north. A negative correlation between vegetation coverage and density of geological hazards points was discovered, which suggests the regularity of density of geological hazards points descending with the increasing of vegetation coverage: the higher the vegetation, the lower the density of geological hazards points.

Keywords vegetation coverage      dimidiate pixel      spatial-temporal pattern      geological hazards      Yanchi County     
:  TP79  
Corresponding Authors: Xiangnan LIU     E-mail: 33131692@qq.com;liuxn@cugb.edu.cn
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaodong ZHANG
Xiangnan LIU
Zhipeng ZHAO
Yinxin ZHAO
Yuxue MA
Haiyan LIU
Cite this article:   
Xiaodong ZHANG,Xiangnan LIU,Zhipeng ZHAO, et al. Spatial-temporal pattern analysis of the vegetation coverage and geological hazards in Yanchi County based on dimidiate pixel model[J]. Remote Sensing for Land & Resources, 2018, 30(2): 195-201.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.26     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/195
年份 NDVIveg NDVIsoil
1989年 0.772 37 0.097 06
1999年 0.694 78 0.088 52
2006年 0.608 85 0.080 20
2014年 0.883 29 0.081 79
Tab.1  NDVIveg and NDVIsoil of remote sensing images in different periods
植被覆盖
度等级
1989年 1999年 2006年 2014年 变化率/(km2·a-1)
面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 1989—
1999年
1999—
2006年
2006—
2014年
Ⅰ级 1 308.34 19.36 890.10 13.17 1 933.55 28.61 813.75 12.04 -41.82 149.06 -139.98
Ⅱ级 2 366.14 35.01 2 179.21 32.25 3 281.98 48.57 2 919.37 43.20 -18.69 157.54 -45.33
Ⅲ级 1 656.35 24.51 2 074.65 30.70 1 118.17 16.55 1 885.13 27.90 41.83 -136.64 95.87
Ⅳ级 802.84 11.88 1 030.83 15.25 245.13 3.63 687.70 10.18 22.80 -112.24 55.32
Ⅴ级 623.95 9.23 582.83 8.62 178.79 2.65 451.67 6.68 -4.12 -57.72 34.11
Tab.2  Vegetation coverage area and rate of change in Yanchi County from 1989 to 2014
Fig.1  Vegetation coverage variation of Yanchi County in different periods
Fig.2  Precipitation and temperature variation in Yanchi County from 1989 to 2014 (Yanchi Station)
Fig.3  Density of geological hazards in Yanchi County
Fig.4  Overlay statistics of vegetation coverage and geological hazards in Yanchi County
植被覆盖
度变化
无覆盖
面积/km2
灾害点密度/
(个·km-2)
极低覆盖度
面积/km2
灾害点密度/
(个·km-2)
低覆盖
度面积/km2
灾害点密度/
(个·km-2)
中覆盖
度面积/km2
灾害点密度/
(个·km-2)
高覆盖度
面积/km2
灾害点密度/
(个·km-2)
严重退化 0 0.032 23.39 0.066 133.05 0.039 259.62 0.050 422.38 0.026
中度退化 22.67 0.056 303.46 0.066 589.25 0.028 283.93 0.019 108.56 0.010
轻微退化 101.43 0.092 527.41 0.095 368.44 0.043 103.20 0.008 30.00 0.011
轻微改善 234.47 0.101 657.05 0.079 252.69 0.061 63.14 0.013 17.75 0.015
中度改善 581.01 0.076 615.69 0.092 206.24 0.078 52.24 0.010 17.74 0.022
极度改善 368.96 0.051 239.12 0.061 106.61 0.062 40.65 0.024 27.50 0.025
Tab.3  Density of geological hazard points and areas on the overlay of vegetation coverage variation from 1989 to 2014 and vegetation coverage in 1989 of Yanchi County
[1] Nandi A, Shakoor A . A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses[J]. Engineering Geology, 2010,110(1/2):11-20.
doi: 10.1016/j.enggeo.2009.10.001 url: http://linkinghub.elsevier.com/retrieve/pii/S0013795209002646
[2] 贾贵义, 全永庆, 黎志恒 , 等. 基于组合赋权法的白龙江流域甘肃段地质灾害危险性评价[J]. 冰川冻土, 2014,36(5):1227-1236.
doi: 10.7522/j.issn.1000-0240.2014.0147
[2] Jia G Y, Quan Y Q, Li Z H , et al. Geo-hazards assessment for the Gansu segment in Bailongjiang River Basin by using combination weighting method[J]. Journal of Glaciology and Geocryology, 2014,36(5):1227-1236.
[3] 杜军, 杨青华, 严嘉 , 等. 基于GIS与信息量模型的汶川次生地质灾害危险性评价[J]. 地球科学, 2010,35(2):324-330.
doi: 10.3799/dqkx.2010.034 url: http://d.wanfangdata.com.cn/Periodical/dqkx201002018
[3] Du J, Yang Q H, Yan J , et al. Hazard evaluation of secondary geological disaster based on GIS and information value method[J]. Earth Science, 2010,35(2):324-330.
[4] 许冲, 戴福初, 姚鑫 , 等. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J]. 工程地质学报, 2010,18(1):15-26.
doi: 10.3969/j.issn.1004-9665.2010.01.003 url: http://www.cqvip.com/Main/Detail.aspx?id=36082688
[4] Xu C, Dai F C, Yao X , et al. GIS platform and certainty factor analysis method based Wenchuan earthquake-induced landslide susceptibility evaluation[J]. Journal of Engineering Geology, 2010,18(1):15-26.
[5] 倪忠云, 何政伟, 赵银兵 , 等. 基于RS和GIS的丹巴县植被盖度与地质灾害关系研究[J]. 物探化探计算技术, 2011,33(2):217-221.
doi: 10.3969/j.issn.1001-1749.2011.02.019 url: http://d.wanfangdata.com.cn/Periodical/wthtjsjs201102019
[5] Ni Z Y, He Z W, Zhao Y B , et al. Study on the relationship between vegetation cover and geo-hazards in Danba County based on RS and GIS[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2011,33(2):217-221.
[6] 曾令科, 许模, 方琼 , 等. 植被与地质灾害发育分布关系初探[J]. 地质灾害与环境保护, 2010,21(3):97-100.
[6] Zeng L K, Xu M, Fang Q , et al. Vegetation and development of geological hazards[J]. Journal of Geological Hazards and Environment Preservation, 2010,21(3):97-100.
[7] 张晓东, 刘湘南, 赵志鹏 , 等. 遥感技术在宁夏中宁县地质灾害详细调查中的应用[J]. 中国地质灾害与防治学报, 2015,26(3):120-126.
doi: 10.16031/j.cnki.issn.1003-8035.2015.03.22 url: http://d.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201503022
[7] Zhang X D, Liu X N, Zhao Z P , et al. The application of RS technique for investigation of geological hazards in Zhongning County of Ningxia[J]. The Chinese Journal of Geological Hazard and Control, 2015,26(3):120-126.
[8] 张国平, 徐晶, 毕宝贵 . 滑坡和泥石流灾害与环境因子的关系[J]. 应用生态学报, 2009,20(3):653-658.
doi: url: http://d.wanfangdata.com.cn/Periodical_yystxb200903027.aspx
[8] Zhang G P, Xu J, Bi B G . Relations of landslide and debris flow hazards to environmental factors[J]. Chinese Journal of Applied Ecology, 2009,20(3):653-658.
[9] 李凯, 孙悦迪, 江宝骅 , 等. 基于像元二分法的白龙江流域植被覆盖度与滑坡时空格局分析[J]. 兰州大学学报(自然科学版), 2014,50(3):376-382.
doi: 10.13885/j.issn.0455-2059.2014.03.013 url: http://d.wanfangdata.com.cn/Periodical/lzdxxb201403013
[9] Li K, Sun Y D, Jiang B H , et al. Analysis on spatial-temporal patterns of the vegetation coverage and landslides in Bailongjiang River Basin based on the dimidiate pixel model[J]. Journal of Lanzhou University(Natural Sciences), 2014,50(3):376-382.
[10] Leprieur C, Verstraete M M, Pinty B . Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data[J]. Remote Sensing Reviews, 1994,10(4):265-284.
doi: 10.1080/02757259409532250 url: http://www.tandfonline.com/doi/abs/10.1080/02757259409532250
[11] Gutman G, Ignatov A . The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing, 1998,19(8):1533-1543.
doi: 10.1080/014311698215333 url: http://www.tandfonline.com/doi/abs/10.1080/014311698215333
[12] Mu S J, Yang H F, Li J L , et al. Spatio-temporal dynamics of vegetation coverage and its relationship with climate factors in Inner Mongolia,China[J]. Journal of Geographical Sciences, 2013,23(2):231-246.
doi: 10.1007/s11442-013-1006-x url: http://link.springer.com/10.1007/s11442-013-1006-x
[13] Gillies R R, Kustas W P, Humes K S . A verification of the “triangle” method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index(NDVI) and surface[J]. International Journal of Remote Sensing, 1997,18(15):3145-3166.
doi: 10.1080/014311697217026 url: http://www.tandfonline.com/doi/abs/10.1080/014311697217026
[14] 贾宝全 . 基于TM卫星影像数据的北京市植被变化及其原因分析[J]. 生态学报, 2013,33(5):1654-1666.
doi: 10.5846/stxb201208251199 url: 年度引用
[14] Jia B Q . Driving factor analysis on the vegetation changes derived from the Landsat TM images in Beijing[J]. Acta Ecologica Sinica, 2013,33(5):1654-1666.
[15] 庞吉林, 张克斌, 乔娜 , 等. 基于RS的盐池县近10年植被覆盖度动态变化研究[J]. 水土保持研究, 2012,19(4):112-115,121.
url: http://d.wanfangdata.com.cn/Periodical/stbcyj201204023
[15] Pang J L, Zhang K B, Qiao N , et al. RS-based study on dynamics of the vegetation coverage in recent 10 years in Yanchi County[J]. Research of Soil and Water Conservation, 2012,19(4):112-115,121.
[1] JIN Chengming, YANG Xingwang, JING Haitao. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4): 258-264.
[2] Aibin WU, Yanxia ZHAO, Yanjie QIN, Huitao SHEN, Qinchen LI. A study of topographical differentiation of ecological land spatial-temporal pattern in Hebei Province[J]. Remote Sensing for Land & Resources, 2020, 32(2): 146-153.
[3] Yuqi CHENG, Yuqing WANG, Jingping SUN, Chengfu ZHANG. Temporal and spatial variation of evapotranspiration and grassland vegetation cover in Duolun County, Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(1): 200-208.
[4] Jida PENG, Chungui ZHANG. Remote sensing monitoring of vegetation coverage by GF-1 satellite: A case study in Xiamen City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 137-142.
[5] Xiaodong ZHANG, Xiangnan LIU, Zhipeng ZHAO, Dan WU, Wenzhong WU, Xiaodong CHU. Geological disaster hazard assessment in Yanchi County based on AHP[J]. Remote Sensing for Land & Resources, 2019, 31(3): 183-192.
[6] Jiaming LAI, Wunian YANG. Dynamic changes of vegetation cover in natural forest area of western Sichuan in recent 29 years based on RS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 132-138.
[7] Yuting ZHANG, Zhenfei ZHANG, Zhi ZHANG. Remote sensing study of vegetation coverage during the period 1992—2014 in Dananhu desert area, Xinjiang[J]. Remote Sensing for Land & Resources, 2018, 30(1): 187-195.
[8] LI Jianqiang, HAN Haihui, GAO Ting, YANG Min, LIANG Nan. The application of ZY-3 satellite to geological hazards survey and evaluation: A case study of Baoji loess area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 73-80.
[9] ZHANG Chengcai, LUO Weiran, DOU Xiaonan, WANG Jinxin. Research on the method of using Landsat8 data to improve FCD model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 33-38.
[10] ZHENG Zhaoju, ZENG Yuan, ZHAO Yujin, ZHAO Dan, WU Bingfang. Monitoring and dynamic analysis of fractional vegetation cover in southwestern China over the past 15 years based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 128-136.
[11] LIU Ying, HOU Enke, YUE Hui. Dynamic monitoring and trend analysis of vegetation change in Shendong mining area based on MODIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 132-137.
[12] LIU Zhe, QIU Bingwen, WANG Zhuangzhuang, QI Wen. Temporal and spatial variation analysis of vegetation cover in the Loess Plateau from 2001 to 2014[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 192-198.
[13] HE Haiyan, LING Feilong, WANG Xiaoqin, LIANG Zhifeng. Estimation of fractional vegetation coverage in water and soil loss area based on Radar vegetation index[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 165-170.
[14] LI Yuwei, JIA Kun, WEI Xiangqin, YAO Yunjun, SUN Jun, MOU Liqiu. Fractional vegetation cover estimation in northern China and its change analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 112-117.
[15] LIU Yadi, WANG Xiaoqin, JIANG Hong. Estimation of vegetation coverage based on topography-adjusted vegetation index (TAVI) in Changting County, Fujian Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 164-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech