Inversion of snow depth and snow water equivalent based on passive microwave remote sensing and its application progress
WANG Zekun1,2(), GAN Fuping3(), YAN Bokun3, LI Xianqing1,2, LI Hemou1,2
1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology(Beijing), Beijing 100083, China 2. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China 3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Snow depth and snow water equivalent are critical elements for snow cover observation and are greatly significant in fields such as cryosphere, global climate change, and water resource surveys. Microwave remote sensing is superior to both visible-light and near-infrared remote sensing in snow cover observation. This study systematically summarized the research results of the passive microwave remote sensing in the inversion of snow depth and snow water equivalent. It organized three types of snow cover observation methods, i.e., field surveys, long-term observations at ground stations, and regional observations based on satellite remote sensing, as well as major snow cover parameters to be observed. Furthermore, it summarized and evaluated three inversion algorithms, i.e., semi-empirical method, physical model, and machine learning. Finally, this study presented the results of the snow cover in the Qinghai-Tibet Plateau observed using passive microwave remote sensing, predicted the future development trend of remote sensing-based inversion of snow cover parameters, and put forward scientific suggestions for the in-depth implementation of the inversion of snow depth and snow water equivalent passive microwave remote sensing.
Zekun WANG,Fuping GAN,Bokun YAN, et al. Inversion of snow depth and snow water equivalent based on passive microwave remote sensing and its application progress[J]. Remote Sensing for Natural Resources,
2022, 34(3): 1-9.
Che T, Li X. Spatial distribution and temporal variation of snow water resources in China during 1993—2002[J]. Journal of Glaciology and Geocryology, 2005, 27(1):64-67.
[3]
胡汝骥. 中国积雪与雪灾防治[M]. 北京: 中国环境出版社, 2013.
[3]
Hu R J. Snow and snow disaster in China[M]. Beijing: Chinese Environment Science Press, 2013.
[4]
Shi J C, Xiong C, Jiang L M. Review of snow water equivalent microwave remote sensing[J]. Science China, 2016, 59(4):731-745.
Liang S L, Bai R, Chen X N, et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing, 2020, 24(6):618-671.
[6]
蒋玲梅. 被动微波雪水当量研究[D]. 北京: 北京师范大学, 2005.
[6]
Jiang L M. Passive microwave remote sensing of snow water equivalence study[D]. Beijing: Beijing Normal University, 2005.
Che T, Li X, Gao F. Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data(SSM/I)[J]. Journal of Glaciology and Geocryology, 2004, 26(3):363-368.
Li J Y, Yang X C, Xu B, et al. Snow monitoring using MODIS and AMSR-E in six main pastoral areas of China[J]. Scientia Geographica Sinica, 2011, 31(9):1097-1104.
Che T, Li X. The development and prospect of estimating snow water equivalent using passive microwave remote sensing data[J]. Advances in Earth Science, 2004, 19(2):204-210.
Li X, Che T. A review on passive microwave remote sensing of snow cover[J]. Journal of Glaciology and Geocryology, 2007, 29(3):487-496.
[12]
Pulliainen J T, Grandell J, Hallikainen M T. HUT snow emission model and its applicability to snow water equivalent retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1378-1390.
doi: 10.1109/36.763302
url: http://ieeexplore.ieee.org/document/763302/
Tsang L, Chen C T, Chang A T, et al. Dense media radiative transfer theory based on quasicrystalline approximation with applications to passive microwave remote sensing of snow[J]. Radio Science, 2000, 35(3):731-749.
doi: 10.1029/1999RS002270
url: http://doi.wiley.com/10.1029/1999RS002270
Ding K H, Xu X, Tsang L. Electromagnetic scattering by Bicontinuous random microstructures with discrete permittivities[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8):3139-3151.
doi: 10.1109/TGRS.2010.2043953
url: http://ieeexplore.ieee.org/document/5444898/
Che T. Study on passive microwave remote sensing of snow and snow data assimilation method[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute,CAS, 2006.
Wang J, Zhong X Y, Dai L Y, et al. Investigation on the characteristics and distribution of snow cover in China[J]. Advances in Earth Science, 2018, 33(1):12-26.
Wang Z L, Hu S T, Fu Q, et al. Research progress in remote sensing inversion of snow cover parameters[J]. Journal of Northeast Agricultural University, 2016, 47(9):100-106.
Ma L J, Qin D H. Spatial-temporal characteristics of observed key parameters for snow cover in China during 1957—2009[J]. Journal of Glaciology and Geocryology, 2012, 34(1):1-11.
[26]
中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003:151-153.
[26]
China Meteorological Administration. Ground meteorological observation specifications[M]. Beijing: China Meteorological Press, 2003:151-153.
Qiu Y B, Lu J Y, Shi L J, et al. Passive microwave remote sensing snow water equivalent data set in high Asia area[J]. Scientific Data in China(Chinese-English Online Edition), 2019, 4(1):110-125.
[28]
Dozier J, Painter T. Multispectral and hyperspectral remote sensing of alpine snow properties[J]. Annual Review of Earth and Planetary Sciences, 2004, 21(1):465-494.
Kunkee D B, Swadley S D, Poe G A, et al. Special sensor microwave imager sounder (SSMIS) radiometric calibration anomalies—part I:Identification and characterization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4):1017-1033.
doi: 10.1109/TGRS.2008.917213
url: http://ieeexplore.ieee.org/document/4475707/
Sun Z W, Shi J C, Yang H, et al. A study on snow depth estimating and snow water equivalent algorithm for FY-3 MWRI[J]. Remote Sensing Technology and Application, 2007, 22(2):264-267.
Tedesco M, Jeyaratnam J. A new operational snow retrieval algorithm applied to historical AMSR-E brightness temperatures[J]. Remote Sensing, 2016, 8(12):1-25.
doi: 10.3390/rs8010001
url: http://www.mdpi.com/2072-4292/8/1/1
[37]
Yang J W, Jiang L M, Wu S L, et al. Development of a snow depth estimation algorithm over China for the FY-3D/MWRI[J]. Remote Sensing, 2019, 11(8):1-21.
doi: 10.3390/rs11010001
url: http://www.mdpi.com/2072-4292/11/1/1
Sun Z W, Yu P S, Xia L, et al. Progress in study of snow parameter inversion by passive remote sensing[J]. Remote Sensing for Land and Resources, 2015, 27(1):9-15.doi: 10.6046/gtzyyg.2015.01.02.
doi: 10.6046/gtzyyg.2015.01.02
Jiang L M, Shi J C, Tjuatja S. Estimation of snow water equivalence using the polarimetric scanning radiometer from the Cold Land Processes Experiments(CLPX03)[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2):359-363.
doi: 10.1109/LGRS.2010.2076345
url: http://ieeexplore.ieee.org/document/5604644/
Jiang L M, Cui H Z, Wang G X, et al. Progress on remote sensing of snow,surface soil frozen/thaw state and soil moisture[J]. Remote Sensing Technology and Application, 2020, 35(6):1237-1262.
[46]
Forman B A, Reichle R H, Derksen C. Estimating passive microwave brightness temperature over snow-covered land in North America using a land surface model and an artificial neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1):235-248.
doi: 10.1109/TGRS.2013.2237913
url: http://ieeexplore.ieee.org/document/6471203/
[47]
Forman B A, Reichle R H. Using a support vector machine and a land surface model to estimate large-scale passive microwave brightness temperatures over snow covered land in North America[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9):4431-4441.
doi: 10.1109/JSTARS.2014.2325780
url: https://ieeexplore.ieee.org/document/6827176/
Xiao X X, Zhang T J. Passive microwave remote sensing of snow depth and snow water equivalent:Overview[J]. Advances in Earth Science, 2018, 33(6):590-605.
Guo J P, Liu H, An L C, et al. Changes in the snow cover rate of the Tibetan Plateau from 2001 to 2012 and the influence of terrain[J]. Plateau Meteorology, 2016, 35(1):24-33.
Li X J, Liu Y J, Zhu X X, et al. Using SSM/I data to identify snow cover in my country and surrounding areas[J]. Journal of Applied Meteorology, 2007, 18(1):12-20.
Huang X D, Li X B, Liu C Y, et al, Remote sensing inversion of snow cover extent and snow depth/snow water equivalent on the Qinghai-Tibet Plateau:Advance and challenge[J]. Glaciology and Geocryology, 2019, 41(5):1138-1149.
Gao Y, Xie H J, Lu N, et al. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra Aqua MODIS and Aqua AMSR-E measurements[J]. Journal of Hydrolo-gy, 2010, 385(1):23-35.
Che T, Hao X H, Dai L Y, et al. Snowcover variation and its impacts over the Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1247-1253.
[63]
Huang X D, Liu C Y, Wang Y L, et al. Snow cover variations across China from 1951—2018[J]. The Cryosphere Discussions, 2020. doi: 10.5194/tc-2020-202.
doi: 10.5194/tc-2020-202
[64]
Senan R, Orsolini Y J, Weisheimer A, et al. Impact of springtime Himalayan-Tibetan Plateau snowpack on the onset of the Indian summer monsoon in coupled seasonal forecasts[J]. Climate Dynamics, 2016, 47(9):2709-2725.
doi: 10.1007/s00382-016-2993-y
url: http://link.springer.com/10.1007/s00382-016-2993-y
Wang S J. Progresses in variability of snow cover over the Qinghai-Tibetan Plateau and its impact on water resources in China[J]. Plateau Meteorology, 2017, 36(5):1153-1164.
[66]
Fang Y H, Zhang X, Niu G Y, et al. Study of the spatiotemporal characteristics of meltwater contribution to the total runoff in the upper Changjiang River basin[J]. Water, 2017, 9(3):165.
doi: 10.3390/w9030165
url: http://www.mdpi.com/2073-4441/9/3/165