Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (4) : 136-143     DOI: 10.6046/zrzyyg.2021349
|
Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment
ZHANG Siyuan1,2(), YUE Chu1,2, YUAN Guoli2(), YUAN Shuai1, PANG Wenqiang3, LI Jun2
1. Hohhot General Survey of Natural Resources Center, China Geological Survey, Hohhot 010010, China
2. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
3. Bayannur City Modern Agriculture and Animal Husbandry Development Center, Bayannur 015000, China
Download: PDF(2320 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Soil salinization is the most severe environmental risk in arid and semi-arid areas. The remote sensing method that constructs a characteristic space based on characteristic parameters provides an effective and economical tool and technique for the timely monitoring and inversion of soil salinization. Presently, the normalized difference vegetation index (NDVI) and the salinity index (SI) are mainly selected as the characteristic parameters for salinization inversion, while refined analysis and regional applicability are lacking. This study investigated Urad Front Banner in Inner Mongolia based on the Landsat8 OLI data. The ENDVI-SI3 characteristic space was constructed using the enhanced normalized difference vegetation index (ENDVI) that introduced the shortwave infrared band and the salinity index 3 (SI3) with the best inversion effect for semi-arid areas. Accordingly, the improved salinization monitoring index (ISMI) model was built. The results show that the correlation coefficient between ISMI and soil salt content was up to 0.82, and the inversion precision of the ISMI model was higher than that of NDVI, EDNVI, and SI3 (-0.66, -0.70, and 0.75, respectively). Based on the ISMI, this study achieved the quantitative inversion analysis and risk assessment of soil salinization in Urad Front Banner. This study provides an approach for selecting the optimal characteristic parameters of the characteristic space in the salinization inversion of semi-arid areas.

Keywords salinization      remote sensing model      ENDVI      SI3      feature space      risk assessment     
ZTFLH:  TP79  
Issue Date: 27 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Siyuan ZHANG
Chu YUE
Guoli YUAN
Shuai YUAN
Wenqiang PANG
Jun LI
Cite this article:   
Siyuan ZHANG,Chu YUE,Guoli YUAN, et al. Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment[J]. Remote Sensing for Natural Resources, 2022, 34(4): 136-143.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021349     OR     https://www.gtzyyg.com/EN/Y2022/V34/I4/136
Fig.1  Geographical position of Urad Front Banner
Fig.2  ENDVI-SI3 two-dimensional scatter plot
指数 全称 公式 相关系数
NDVI 归一化植被指数 N D V I = N I R - R N I R + R -0.66
ENDVI 增强型归一化植被指数 E N D V I = N I R - R + S W I R 2 N I R + R + S W I R 2 -0.70
EVI 增强植被指数 E V I = 2.5 N I R - R N I R + 6 R - 7.5 B + 1 -0.54
EEVI 扩展型增强植被指数 E E V I = 2.5 N I R - R + S W I R 2 N I R + 6 R - 7.5 B + 1 -0.46
MSAVI 修正土壤调节植被指数 M S A V I = 1 2 [ ( 2 N I R - 1 ) - 2 ( N I R + 1 ) - 8 ( N I R - R ) -0.67
SI 盐分指数 S I = B R 0.72
ESI 增强型盐分指数 E S I 1 = B R + S W I R 1 S W I R 1 0.73
SI3 盐分指数3 S I 3 = G 2 + R 2 0.75
ESI3 增强型盐分指数3 E S I 3 = ( G 2 + R 2 + S W I R ) 2 S W I R 1 0.64
S2 盐分指数 S 2 = B - R B + R 0.62
ES2 增强型盐分指数 E S 2 = B - R + S W I R 2 B + R + S W I R 2 -0.61
SI-T 盐分指数 S I - T = R N I R × 100 0.68
ESI-T 增强型盐分指数 E S I - T = R N I R + S W I R 2 0.73
NDSI 归一化盐分指数 N D S I = R - N I R R + N I R 0.43
ENDSI 增强型归一化盐分指数 E N D S I = R - N I R R + N I R + S W I R 2 0.61
Tab.1  Results of index correlation analysis
盐渍化程度 土壤含盐量/
(g·kg-1)
ISMI 植被生
长状况
面积/km2 占比/%
非盐渍土 <1 <0.20 正常 907.44 18.89
弱度盐渍土 [1,2) [0.20,0.27) 轻微 2 591.16 53.93
中度盐渍土 [2,4) [0.27,0.41) 受限 968.72 20.16
强度盐渍土 [4,6) [0.41,0.56) 不良 174.42 3.63
盐土 ≥6 ≥0.56 困难 163.20 3.40
Tab.2  Classification of saline soil based on ISMI
Fig.3  Spatial distribution of saline soil in Urad Front Banner based on ISMI
变量 相关系
r
显著水
P
样本
灰色关
联度 γ
权重 w
镁离子/(g·kg-1) 0.836 <0.001 66 0.909 0.126
含盐量/(g·kg-1) 0.820 <0.001 66 0.917 0.127
氯离子/(g·kg-1) 0.772 <0.001 66 0.897 0.124
钠离子/(g·kg-1) 0.752 <0.001 66 0.884 0.123
硫酸根/(g·kg-1) 0.635 <0.001 66 0.833 0.115
钙离子/(g·kg-1) 0.524 <0.001 66 0.949 0.132
有机质/(g·kg-1) -0.327 0.007 66 0.924 0.128
有效磷/(mg·kg-1) 0.289 0.019 66 0.900 0.125
钾离子/(g·kg-1) 0.228 0.065 66 0.949
pH 0.212 0.087 66 0.958
全氮/(g·kg-1) -0.203 0.103 66 0.927
容重/(g·cm-3) -0.196 0.115 66 0.952
碳酸氢根/(g·kg-1) 0.061 0.629 66 0.939
Tab.3  Correlation screening and weighting of salinization risk assessment factors
Fig.4  Functional relationship between SRAV and ISMI
Fig.5  Spatial distribution of soil salinization risk assessment in Urad Front Banner
风险等级 风险程度 风险值 面积/km2 面积比例/%
1 风险极大 ≥0.75 401.17 8.31
2 风险很大 [0.5,0.75) 1 420.06 29.43
3 风险较大 [0.3,0.5) 803.66 16.66
4 一般风险 [0.2,0.3) 796.60 16.51
5 风险较小 <0.2 1 403.39 29.09
Tab.4  Grading for risk assessment of soil salinization in Urad Front Banner
[1] 朱庭芸. 灌区土壤盐渍化防治[M]. 北京: 农业出版社, 1992:32-37.
[1] Zhu T Y. Soils-salinity control in irrigation area[M]. Beijing: Agricultural Press, 1992:32-37.
[2] Kovda A. Loss of productive land due to salinization[J]. Ambio, 1983, 12(2):1-4.
[3] 杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008(5):837-845.
[3] Yang J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008(5):837-845.
[4] Allbed A, Kumar L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology:A review[J]. Advances in Remote Sensing, 2013, 2(4):373-385.
doi: 10.4236/ars.2013.24040 url: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/ars.2013.24040
[5] Metternicht G I, Zinck J A. Remote sensing of soil salinity:Potentials and constraints[J]. Remote Sensing of Environment, 2003, 85(1):1-20.
doi: 10.1016/S0034-4257(02)00188-8 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425702001888
[6] 赵剑桥. 土壤盐渍化的遥感监测方法及应用[J]. 农村经济与科技, 2018, 29(7):41-42.
[6] Zhao J Q. Remote sensing monitoring method of soil salinization and its application[J]. Rural Economy and Science-Technology, 2018, 29(7):41-42.
[7] Thiam S, Villamor G B, Faye L C, et al. Monitoring land use and soil salinity changes in coastal landscape:A case study from Senegal[J]. Environmental Monitoring and Assessment, 2021, 193(5): 259-260.
doi: 10.1007/s10661-021-08958-7 url: https://doi.org/10.1007/s10661-021-08958-7
[8] 潘肖燕, 崔江慧, 杨江燕, 等. 基于SDI校正指数的滨海平原盐渍化生态风险评价[J]. 农业资源与环境学报, 2020, 37(5):709-718.
[8] Pan X Y, Cui J H, Yang J Y, et al. Ecological risk assessment of salinization in coastal plain based on SDI correction index[J]. Journal of Agricultural Resources and Environment, 2020, 37(5):709-718.
[9] 樊彦国, 张维康, 刘敬一. 基于植被指数-盐分指数特征空间的黄河三角洲盐渍化遥感监测研究[J]. 山东农业科学, 2016, 48(5):137-141.
[9] Fan Y G, Zhang W K, Liu J Y. Remote sensing monitoring model of soil salinization in the Yellow River delta zone based on vegetation index-salt index feature space[J]. Shandong Agricultural Sciences, 2016, 48(5):137-141.
[10] 哈学萍, 丁建丽, 塔西甫拉提·特依拜, 等. 基于SI-Albedo特征空间的土壤盐渍化遥感监测指数研究[J]. 土壤学报, 2009, 46(4):698-703.
[10] Ha X P, Ding J L, Tashpolat T, et al. SI-Albedo space-based remote sensing synthesis index models for monitoring of soil salinization[J]. Acta Pedologica Sinica, 2009, 46(4):698-703.
[11] 王飞, 丁建丽, 伍漫春. 基于NDVI-SI特征空间的土壤盐渍化遥感模型[J]. 农业工程学报, 2010, 26(8):168-173,8.
[11] Wang F, Ding J L, Wu M C. Remote sensing monitoring models of soil salinization based in NDVI-SI feature space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8):168-173,8.
[12] 陈实, 徐斌, 金云翔, 等. 北疆农区土壤盐渍化遥感监测及其时空特征分析[J]. 地理科学, 2015, 35(12):1607-1615.
doi: 10.13249/j.cnki.sgs.2015.012.1607
[12] Chen S, Xu B, Jin Y X, et al. Remote sensing monitoring and spatial-temporal characteristics analysis of soil salinization in agricultural area of northern Xinjiang[J]. Scientia Geographica Sinica, 2015, 35(12):1607-1615.
doi: 10.13249/j.cnki.sgs.2015.012.1607
[13] 张添佑, 王玲, 王辉, 等. 玛纳斯河流域盐渍化灌区生态环境遥感监测研究[J]. 生态学报, 2017, 37(9):3009-3018.
[13] Zhang T Y, Wang L, Wang H, et al. Assessment of soil salinization ecological environment change in the Manas River basin using remote sensing technology[J]. Acta Ecologica Sinica, 2017, 37(9):3009-3018.
[14] 史海滨, 杨树青, 李瑞平, 等. 内蒙古河套灌区水盐运动与盐渍化防治研究展望[J]. 灌溉排水学报, 2020, 39(8):1-17.
[14] Shi H B, Yang S Q, Li R P, et al. Soil water and salt movement and soilsalinization control in Hetao irrigation district:Current state and future prospect[J]. Journal of Irrigation and Drainage, 2020, 39(8):1-17.
[15] 卢晶, 张绪教, 叶培盛, 等. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究[J]. 国土资源遥感, 2020, 32(1):169-175.doi: 10.6046/gtzyyg.2020.01.23.
doi: 10.6046/gtzyyg.2020.01.23
[15] Lu J, Zhang X J, Ye P S, et al. Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space[J]. Remote Sensing for Land and Resources, 2020, 32(1):169-175.doi: 10.6046/gtzyyg.2020.01.23.
doi: 10.6046/gtzyyg.2020.01.23
[16] 孙国军, 孙涛. 乌拉特前旗现代绿洲农业发展对策研究[J]. 地域研究与开发, 2011, 30(6):136-139.
[16] Sun G J, Sun T. Study on modern oasis agricultural influencing factors and its countermeasures in Wulate County[J]. Areal Research and Development, 2011, 30(6):136-139.
[17] 孙国军. 基于BP人工神经网络的内蒙古乌拉特前旗生态环境脆弱性评价[D]. 兰州: 西北师范大学, 2009.
[17] Sun G J. Evaluation of eco-environment fragilily with BP artificial neural networks in Wulate Country,Inner Mongolia,China[D]. Lanzhou: Northwest Normal University, 2009.
[18] 王学全, 高前兆, 卢琦. 内蒙古河套灌区水资源高效利用与盐渍化调控[J]. 干旱区资源与环境, 2005(6):120-125.
[18] Wang X Q, Gao Q Z, Lu Q. Effective use of water resources and salinity and waterlogging control in the Hetao irrigation area of Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2005(6):120-125.
[19] 李超, 文天晟, 张凤荣, 等. 半干旱沙区土类/亚类的遥感调查制图方法[J]. 农业工程学报, 2018, 34(6):189-196.
[19] Li C, Wen T S, Zhang F R, et al. Method for remote sensing survey and mapping of soil types and subtypes in semi-arid sand region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6):189-196.
[20] Weiss E, Marsh S E, Pfirman E S. Application of NOAA-AVHRR NDVI time-series data to assess changes in Saudi Arabia’s rangelands[J]. International Journal of Remote Sensing, 2001, 22(6): 1005-1028.
doi: 10.1080/014311601300074540 url: https://www.tandfonline.com/doi/full/10.1080/014311601300074540
[21] Tilley D R, Ahmed M, Son J H, et al. Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh[J]. Journal of Environmental Quality, 2007, 36(3): 780-789.
pmid: 17412913
[22] 孙媛. 基于土壤和植被光谱信息的宁夏银北地区土壤盐碱化程度反演研究[D]. 银川: 宁夏大学, 2020.
[22] Sun Y. Inversion of the degree of soil salinization based on spectra of soil and vegetation in northern Yinchuan Plain of Ningxia[D]. Yinchuan: Ningxia University, 2020.
[23] 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5):107-112.
[23] Chen H Y, Zhao G X, Chen J C, et al. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):107-112.
[24] Allbed A, Kumar L, Aldakheel Y Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region[J]. Geoderma, 2014, 230:1-8.
[25] Khan N M, Rastoskuev V V, Sato Y, et al. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators[J]. Agricultural Water Management, 2005, 77: 96-109.
doi: 10.1016/j.agwat.2004.09.038 url: https://linkinghub.elsevier.com/retrieve/pii/S0378377405000910
[26] Bannari A, Guedon A M, El-Harti A, et al. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor[J]. Communications in Soil Science and Plant Analysis, 2009, 39: 2795-2811.
doi: 10.1080/00103620802432717 url: http://www.tandfonline.com/doi/abs/10.1080/00103620802432717
[27] 王爽, 丁建丽, 王璐, 等. 基于地表光谱建模的区域土壤盐渍化遥感监测研究[J]. 干旱区地理, 2016, 39(1):190-198.
[27] Wang S, Ding J L, Wang L, et al. Remote sensing monitoring of soil salinization based on surface spectral modeling[J]. Arid Land Geo-graphy, 2016, 39(1):190-198.
[28] 张俊华, 孙媛, 贾科利, 等. 不同盐结皮光谱特征及其盐渍化信息预测研究[J]. 农业机械学报, 2018, 49(12):325-333,370.
[28] Zhang J H, Sun Y, Jia K L, et al. Spectral characteristics and salinization information prediction of different soil salt crusts[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12):325-333,370.
[29] Al-Khakani E T, Yousif S R. An assessment of soil salinity and vegetation cover changes for a part of An-Najaf governorate using remote sensing data[J]. Journal of Physics: Conference Series, 2019, 1234: 012023.
doi: 10.1088/1742-6596/1234/1/012023 url: https://doi.org/10.1088/1742-6596/1234/1/012023
[30] Verstraete M M, Pinty B. Designing optimal spectral indexes for remote sensing applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 4(5):1254-1265.
[31] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993:333-335.
[31] Wang Z Q, Zhu S Q, Yu R P, et al. Salt-affected soils in China[M]. Beijing: Science Press, 1993:333-335.
[32] 李自珍, 李维德, 石洪华, 等. 生态风险灰色评价模型及其在绿洲盐渍化农田生态系统中的应用[J]. 中国沙漠, 2002(6):95-100.
[32] Li Z Z, Li W D, Shi H H, et al. Gray model for ecological risk assessment and its application in salinization oasis agroecosystem[J]. Journal of Desert Research, 2002(6):95-100.
[33] 李仙岳, 崔佳琪, 史海滨, 等. 基于指示Kriging的土壤盐渍化风险与地下水环境分析[J]. 农业机械学报, 2021, 52(8):297-306.
[33] Li X Y, Cui J Q, Shi H B, et al. Analysis of soil salinization risk and groundwater environment based on indicator Kriging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8):297-306.
[34] 李冬顺, 杨劲松, 姚荣江. 生态风险分析用于苏北滩涂土壤盐渍化风险评估研究[J]. 土壤学报, 2010, 47(5):857-864.
[34] Li D S, Yang J S, Yao R J. Application of ecological risk analysis to soil salinization risk assessment of coastal tidal flat in north Jiangsu Province[J]. Acta Pedologica Sinica, 2010, 47(5):857-864.
[1] HUA Yongchun, CHEN Jiahao, SUN Xiaotian, PEI Zhiyong. Analysis of landscape ecology risk of the Yellow River basin in Inner Mongolia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 220-229.
[2] DAI Yunhao, GUAN Yao, FENG Chunyong, JIANG Min, HE Xinghong. Extraction and analysis of soil salinization information of Alar reclamation area based on spectral index modeling[J]. Remote Sensing for Natural Resources, 2023, 35(1): 205-212.
[3] LI Xingyou, ZHANG Fei, WANG Zheng. Present situation and development trend in building remote sensing monitoring models of soil salinization[J]. Remote Sensing for Natural Resources, 2022, 34(4): 11-21.
[4] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[5] JIANG Lei, HAN Weizheng, SUN Lina. A study on regional ecological barrier construction based on landscape ecological risk[J]. Remote Sensing for Land & Resources, 2020, 32(4): 219-226.
[6] Jing LU, Xujiao ZHANG, Peisheng YE, Hang WU, Tao WANG. Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space[J]. Remote Sensing for Land & Resources, 2020, 32(1): 169-175.
[7] Juan FENG, Jianli DING, Wenyu WEI. Soil salinization monitoring based on Radar data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 195-203.
[8] Yali ZHANG, Tashpolat·Teyibai, Ardak·Kelimu, Dong ZHANG, Ilyas·Nuermaimaiti, Fei ZHANG. Estimation model of soil salinization based on Landsat8 OLI image spectrum[J]. Remote Sensing for Land & Resources, 2018, 30(1): 87-94.
[9] GUAN Hong, JIA Keli, ZHANG Zhinan, MA Xin. Research on remote sensing monitoring model of soil salinization based on spectrum characteristic analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 100-104.
[10] ZHANG Lihua. Study of land salinization of Hanggin Rear Banner in Inner Mongolia based on ALOS image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 121-126.
[11] LI Xiao-ming, YANG Jing-song, YU Mei, YANG Qi-yong, LIU Mei-xian. Research on Quantitative Remote Sensing of Soil Salinization in the Arid Area Based on Electromagnetic Induction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 53-58.
[12] SUN Xian-bin, LIU Hong-yu. The Effect of Land Use on Landscape Ecological Risk in Yancheng Coastal Area, Jiangsu Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 140-145.
[13] KONG Bing, MA Jian-Wei, CHEN Han-Zhang, ZHANG Xin. The Application of 3S Technology to the Assessment of the Flood Risk in the Wuda Coal Mine,Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 80-85.
[14] LI Hui-Zhi, LI Xin-Guo, WANG Ying. The Monitoring of Dynamic Changes of Soil Salinization in the Downstream
Oasis of the Kaidu River Based on Remote Sensing Technology
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 85-88.
[15] NIU Ting, LI Xia.
A REMOTE SENSING MODEL FOR VEGETATION RESTORATION IN THE LOWER VALLEY OF THE TARIM RIVER
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(2): 79-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech