Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (1) : 118-127     DOI: 10.6046/zrzyyg.2022383
|
Identifying predominant tree species based on airborne hyperspectral images using machine learning algorithms
YU Hang1,2(), TAN Bingxiang1,2(), SHEN Mingtan1,2, HE Chenrui1,2, HUANG Yifei1,2
1. Research Institute of Forest Resources Information Techniques, Chinese Academy of Forestry, Beijing 100091, China
2. Key Laboratory of Forestry Remote Sensing and Information System, NFGA, Beijing 100091, China
Download: PDF(12795 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Identifying forest tree species can provide a valuable scientific reference for ascertaining forest resources. However, it is difficult to achieve accurate tree species classification even using hyperspectral data with high spatial resolution. Hence, there is an urgent need to meet this challenge. This study investigated the Genhe Forest Reserve in the Great Xing’an Range within Inner Mongolia. At spatial resolutions of 1 m and 3 m, two sample value scales were employed: sample points (i.e., the spectral values of pixels corresponding to sample plots) and sample planes (i.e., the average spectral values of pixels in a 3×3 window corresponding to sample plots). Then, this study explored the identification effects of predominant tree species using airborne hyperspectral images based on three machine learning algorithms: neural network (NN), three-dimensional convolution neural network (3DCNN), and support vector machine (SVM). Key findings include: ① Regardless of spatial resolution and sample value scales, the 3DCNN exhibited the highest classification accuracy, yielding the highest overall accuracy and Kappa coefficient of 95.42% and 0.94, respectively; ② Compared to a low spatial resolution (3 m), a high spatial resolution was more favorable to the identification of predominant tree species, with overall accuracy and Kappa coefficient increased by 30.97% and 54.24% at most, respectively; ③ In the case of NN/SVM-based classification, sample points outperformed sample planes in improving the accuracy of tree species identification. In contrast, sample planes outperformed sample points for 3DCNN-based classification at a spatial resolution of 3 m. Overall, spatial resolution, sample value scales, and classification algorithms manifested varying degrees of effects on the identification accuracy of predominant tree species. High-spatial-resolution images, small-sample data, and deep-learning algorithms can be combined to enhance the accuracy of predominant tree species identification using airborne hyperspectral images.

Keywords hyperspectral data      identification of predominant tree species      spatial resolution      multiscale sample     
ZTFLH:  TP79  
  S725.2  
Issue Date: 13 March 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hang YU
Bingxiang TAN
Mingtan SHEN
Chenrui HE
Yifei HUANG
Cite this article:   
Hang YU,Bingxiang TAN,Mingtan SHEN, et al. Identifying predominant tree species based on airborne hyperspectral images using machine learning algorithms[J]. Remote Sensing for Natural Resources, 2024, 36(1): 118-127.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022383     OR     https://www.gtzyyg.com/EN/Y2024/V36/I1/118
Fig.1  Geographical location of the study area
Fig.2  Signal to noise ratio of hyperspectral image and spectral curve of typical ground features
Ⅰ级类型 Ⅱ级类型 Ⅲ级类型 Ⅳ级类型 Ⅴ级类型
林地 有林地 乔木林 纯林 白桦林
落叶松林
混交林 针阔混交林
灌木林地
草地
湿地
非植被 建设用地
水体
Tab.1  Classification system of study area
地类编号 地物类型 样本数(像元)/个
1 白桦林 3 946
2 落叶松林 2 444
3 针阔混交林 2 292
4 灌木林地 3 721
5 草地 1 318
6 湿地 3 924
7 非植被 5 450
Tab.2  Number of samples of each category
Fig.3  Network structure diagram of 3DCNN
Fig.4  Three classification results of plan 1
Fig.5  Three classification results of plan 2
Fig.6  Three classification results of plan 3
Fig.7  Three classification results of plan 4
Fig.8  Overall accuracy and Kappa coefficient of all schemes
分类模型 空间分
辨率/m
采样方式 白桦林 落叶松林 针阔混交林 灌木林
生产者
精度
使用者
精度
生产者
精度
使用者
精度
生产者
精度
使用者
精度
生产者
精度
使用者
精度
NN 1 样本点 0.98 1 0.96 0.99 0.98 0.91 0.95 0.93
样本面 0.69 0.58 0.81 0.91 0.64 0.37 0.74 0.91
3 样本点 0.64 0.70 0.81 0.93 0.58 0.23 0.82 0.81
样本面 0.69 0.50 0.78 0.93 0.45 0.07 0.67 0.87
3D
CNN
1 样本点 0.98 0.99 0.96 0.91 0.95 0.95 0.97 0.87
样本面 0.94 0.86 0.97 0.91 0.62 0.95 0.91 0.94
3 样本点 0.91 0.82 0.93 0.96 0.65 0.71 0.86 0.95
样本面 0.91 0.92 0.96 0.97 0.81 0.71 0.89 0.92
SVM 1 样本点 0.97 1 0.86 1 0.98 0.73 0.97 0.87
样本面 0.69 0.42 0.71 0.96 0 0 0.71 0.87
3 样本点 0.72 0.48 0.71 0.97 0 0 0.69 0.84
样本面 0.64 0.33 0.70 0.95 0 0 0.59 0.85
Tab.3  Accuracy of producers and users of dominant tree species
[1] 宋庆丰. 中国近40年森林资源变迁动态对生态功能的影响研究[D]. 北京: 中国林业科学研究院, 2015.
[1] Song Q F. Study on impact of forest resource dynamic change on forest ecological function in recent 40 years in China[D]. Beijing: Chinese Academy of Forestry, 2015.
[2] Nagendra H, Lucas R, Honrado J P, et al. Remote sensing for conservation monitoring:Assessing protected areas,habitat extent,habitat condition,species diversity,and threats[J]. Ecological Indicators, 2013, 33:45-59.
doi: 10.1016/j.ecolind.2012.09.014 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X12003317
[3] Thomas S C, Malczewski G. Wood carbon content of tree species in Eastern China:Interspecific variability and the importance of the volatile fraction[J]. Journal of Environmental Management, 2007, 85(3):659-662.
pmid: 17187921
[4] Ashutosh S. Monitoring forests:A new paradigm of remote sensing & GIS based change detection[J]. Journal of Geographic Information System, 2012, 4(5):470-478.
doi: 10.4236/jgis.2012.45051 url: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jgis.2012.45051
[5] Connette G, Oswald P, Songer M, et al. Mapping distinct forest types improves overall forest identification based on multi-spectral Landsat imagery for Myanmar’s Tanintharyi Region[J]. Remote Sensing, 2016, 8(11):882.
doi: 10.3390/rs8110882 url: http://www.mdpi.com/2072-4292/8/11/882
[6] 廖金雷, 张磊, 周湘山, 等. 融合植被指数的3D-2D-CNN高光谱图像植被分类方法[J]. 科学技术与工程, 2021, 21(27):11656-11662.
[6] Liao J L, Zhang L, Zhou X S, et al. A hyperspectral image vegetation classification method using 2D-3D CNNs and vegetation index[J]. Science Technology and Engineering, 2021, 21(27):11656-11662.
[7] Wang Z S, Zou C, Cai W W. Small sample classification of hyperspectral remote sensing images based on sequential joint deeping learning model[J]. IEEE Access, 2020, 8:71353-71363.
doi: 10.1109/Access.6287639 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
[8] 谭炳香, 李增元, 陈尔学, 等. 高光谱遥感森林信息提取研究进展[J]. 林业科学研究, 2008, 21(s1):105-111.
[8] Tan B X, Li Z Y, Chen E X, et al. Research advance in forest information extraction from hyoerspectral remote sensing data[J]. Forest Research, 2008, 21(s1):105-111.
[9] 王怀警, 谭炳香, 房秀凤, 等. C5.0决策树Hyperion影像森林类型精细分类方法[J]. 浙江农林大学学报, 2018, 35(4):724-734.
[9] Wang H J, Tan B X, Fang X F, et al. Precise classification of forest types use Hyperion image based on the C5.0 decision tree algorithm[J]. Journal of Zhejiang A & F University, 2018, 35(4):724-734.
[10] Miyoshi G T, Arruda M S, Osco L P, et al. A novel deep learning method to identify single tree species in UAV-based hyperspectral images[J]. Remote Sensing, 2020, 12(8):1294.
doi: 10.3390/rs12081294 url: https://www.mdpi.com/2072-4292/12/8/1294
[11] 何兴元, 任春颖, 陈琳, 等. 森林生态系统遥感监测技术研究进展[J]地理科学, 2018, 38(7):997-1011.
doi: 10.13249/j.cnki.sgs.2018.07.001
[11] He X Y, Ren C Y, Chen L, et al. The progress of forest ecosystems monitoring with remote sensing techniques[J]. Scientia Geographica Sinica, 2018, 38(7):997-1011.
doi: 10.13249/j.cnki.sgs.2018.07.001
[12] Dalponte M, Ørka H O, Gobakken T, et al. Tree species classification in boreal forests with hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):2632-2645.
doi: 10.1109/TGRS.2012.2216272 url: http://ieeexplore.ieee.org/document/6331005/
[13] Suess S, Van der Linden S, Okujeni A, et al. Using class probabilities to map gradual transitions in shrub vegetation from simulated EnMAP data[J]. Remote Sensing, 2015, 7(8):10668-10688.
doi: 10.3390/rs70810668 url: http://www.mdpi.com/2072-4292/7/8/10668
[14] Ghosh A, Fassnacht F E, Joshi P K, et al. A framework for mapping tree species combining hyperspectral and LiDAR data:Role of selected classifiers and sensor across three spatial scales[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26:49-63.
doi: 10.1016/j.jag.2013.05.017 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243413000664
[15] Ali I, Greifeneder F, Stamenkovic J, et al. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data[J]. Remote Sensing, 2015, 7(12):16398-16421.
doi: 10.3390/rs71215841 url: http://www.mdpi.com/2072-4292/7/12/15841
[16] Petropoulos G P, Kontoes C C, Keramitsoglou I. Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18:344-355.
doi: 10.1016/j.jag.2012.02.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243412000396
[17] 张晓男, 钟兴, 朱瑞飞, 等. 基于集成卷积神经网络的遥感影像场景分类[J]. 光学学报, 2018, 38(11):350-360.
[17] Zhang X N, Zhong X, Zhu R F, et al. Scene classification of remote sensing images based onintegrated convolutional neural networks[J]. Acta Optica Sinica, 2018, 38(11):350-360.
[18] Sothe C, La Rosa L E C, De Almeida C M, et al. Evaluating a convolutional neural network for feature extraction and tree species classification using uav-hyperspectral images[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2020:193-199.
[19] Mäyrä J, Keski-Saari S, Kivinen S, et al. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks[J]. Remote Sensing of Environment, 2021, 256:112322.
doi: 10.1016/j.rse.2021.112322 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425721000407
[20] Becker B L, Lusch D P, Qi J. A classification-based assessment of the optimal spectral and spatial resolutions for Great Lakes coastal wetland imagery[J]. Remote Sensing of Environment, 2007, 108(1):111-120.
doi: 10.1016/j.rse.2006.11.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425706004597
[21] 李波. 机载激光点云和高光谱影像融合的城市地物分类研究[D]. 武汉: 武汉大学, 2017.
[21] Li B. Data fusion of aerial LIDAR data and hyperspectral imagery for urban classification[D]. Wuhan: Wuhan University, 2017.
[22] 徐化成. 中国大兴安岭森林[M]. 北京: 科学出版社,1998.
[22] Xu H C. Daxinganling Mountains forests in China[M]. Beijing: Science Press,1998.
[23] 王正文, 王德利. 大兴安岭森林草原过渡带白桦及主要草本植物生态位关系的研究[J]. 应用生态学报, 2001, 12(5):677-681.
[23] Wang Z W, Wang D L. Niche relationships between Betula platyphylla and main understory herbages in forest-steppe ecotone of Daxinganling Mountains[J]. Chinese Journal of Applied Ecology, 2001, 12(5):677-681.
[24] 陈立新, 肖洋. 大兴安岭林区落叶松林地不同发育阶段土壤肥力演变与评价[J]. 中国水土保持科学, 2006, 4(5):50-55.
[24] Chen L X, Xiao Y. Evolution and evaluation of soil fertility in forest land in Larix gmelinii plantations at different development stages in Daxinganling forest region[J]. Science of Soil and Water Conservation, 2006, 4(5):50-55.
[25] 朱博, 王新鸿, 唐伶俐, 等. 光学遥感图像信噪比评估方法研究进展[J]. 遥感技术与应用, 2010, 25(2):303-309.
[25] Zhu B, Wang X H, Tang L L, et al. Review on methods for SNR Estimation of optical remote sensing imagery[J]. Remote Sensing Technology and Application, 2010, 25(2):303-309.
[26] 国家林业局. LY/T 2188.1-2013森林资源数据采集技术规范[S]. 北京: 中国标准出版社, 2014.
[26] State Forestry Administration. LY/T 2188.1-2013 Technical specification for forest resource data collection[S]. Beijing: China Standards Publishing House, 2014.
[27] Audebert N, Le Saux B, Lefèvre S. Deep learning for classification of hyperspectral data:A comparative review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):159-173.
doi: 10.1109/MGRS.2019.2912563
[28] Paoletti M E, Haut J M, Plaza J, et al. Deep learning classifiers for hyperspectral imaging:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158:279-317.
doi: 10.1016/j.isprsjprs.2019.09.006
[29] Hasan M, Ullah S, Khan M J, et al. Comparative analysis of SVM,ANN and CNN for classifying vegetation species using hyperspectral thermal infrared data[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2019, 42:1861-1868.
[30] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1):32-42.
[30] Zhang X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1):32-42.
[31] Nguyen H M, Demir B, Dalponte M. A weighted SVM-based approach to tree species classification at individual tree crown level using LiDAR data[J]. Remote Sensing, 2019, 11(24):2948.
doi: 10.3390/rs11242948 url: https://www.mdpi.com/2072-4292/11/24/2948
[32] 郑迪, 沈国春, 王舶鉴, 等. 基于无人机高光谱影像和深度学习算法的长白山针阔混交林优势树种分类[J]. 生态学杂志, 2022, 41(5):1024-1032.
[32] Zheng D, Shen G C, Wang B J, et al. Classification of dominant species in coniferous and broad-leaved mixed forest on Changbai Mountain based on UAV-based hyperspectral image and deep learning algorithm[J]. Chinese Journal of Ecology, 2022, 41(5):1024-1032.
doi: DOI: 10.13292/j.1000-4890.202203.004
[33] Trier Ø D, Salberg A B, Kermit M, et al. Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data[J]. European Journal of Remote Sensing, 2018, 51(1):336-351.
doi: 10.1080/22797254.2018.1434424 url: https://www.tandfonline.com/doi/full/10.1080/22797254.2018.1434424
[34] Nevalainen O, Honkavaara E, Tuominen S, et al. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging[J]. Remote Sensing, 2017, 9(3):185.
doi: 10.3390/rs9030185 url: http://www.mdpi.com/2072-4292/9/3/185
[35] 周子涵, 倪欢, 马林飞. 面向高光谱遥感图像分类的连续空间依赖增强型空—谱卷积神经网络[J]. 地理与地理信息科学, 2021, 37(6):32-40.
[35] Zhou Z H, Ni H, Ma L F. Improved spectral-spatial convolutional network using continuously spatial dependency enhancement for hyperspectral image classification[J]. Geography and Geo-Information Science, 2021, 37(6):32-40.
[36] 邓琳, 邓明镜, 张力树. 高分辨率遥感影像阴影检测与补偿方法优化[J]. 遥感技术与应用, 2015, 30(2):277-284.
[36] Deng L, Deng M J, Zhang L S. Optimization of shadow detection and compensation method for high-resolution remote sensing images[J]. Remote Sensing Technology and Application, 2015, 30(2):277-284.
[37] 蒋嘉锐, 朱文泉, 乔琨, 等. 基于Sentinel-2数据的天山山地针叶林识别方法研究[J]. 遥感技术与应用, 2021, 36(4):847-856.
[37] Jiang J R, Zhu W Q, Qiao K, et al. An identification method for mountains coniferous in Tianshan with Sentinel-2 data[J]. Remote Sensing Technology and Application, 2021, 36(4):847-856.
[38] Sothe C, De Almeida C M, Schimalski M B, et al. Comparative performance of convolutional neural network,weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data[J]. GIScience & Remote Sensing, 2020, 57(3):369-394.
[39] 李海涛, 戴莉莉, 顾海燕, 等. 样本尺寸对遥感影像FCN训练模型的影响分析[J]. 测绘科学, 2019, 44(6):133-137.
[39] Li H T, Dai L L, Gu H Y, et al. Analysis of sample size influence on FCN training model in remote sensing image[J]. Science of Surveying and Mapping, 2019, 44(6):133-137.
[40] Fricker G A, Ventura J D, Wolf J A, et al. A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery[J]. Remote Sensing, 2019, 11(19):2326.
doi: 10.3390/rs11192326 url: https://www.mdpi.com/2072-4292/11/19/2326
[41] Hartling S, Sagan V, Sidike P, et al. Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning[J]. Sensors, 2019, 19(6):1284.
doi: 10.3390/s19061284 url: https://www.mdpi.com/1424-8220/19/6/1284
[1] HU Chenxia, ZOU Bin, LIANG Yu, HE Chencheng, LIN Zhijia. Spatio-temporal evolution of gross ecosystem product with high spatial resolution: A case study of Hunan Province during 2000—2020[J]. Remote Sensing for Natural Resources, 2023, 35(3): 179-189.
[2] WU Haobo, WU Mengtong, YANG Siqi, FAN Wenjie, REN Huazhong. A method for determining suitable scales for vegetation remote sensing based on the spatial distribution of leaves[J]. Remote Sensing for Natural Resources, 2022, 34(2): 72-79.
[3] SUN Yu, HUANG Liang, ZHAO Junsan, CHANG Jun, CHEN Pengdi, CHENG Feifei. High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4[J]. Remote Sensing for Natural Resources, 2022, 34(2): 97-104.
[4] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
[5] Baoquan WEI, Anning SUO, Ying LI, Jianhua ZHAO. Research on the application of LBV transformation in domestic ZY-3 satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(3): 87-94.
[6] Xianlei FAN, Hongbo YAN, Ying QU. Comparison and validation of the methods for estimating surface albedo from HJ-1 A/B CCD data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 123-131.
[7] Xuewen XING, Song LIU, Degang XU, Kaijun QIAN. Thickness estimation of crude oil slicks by hyperspectral data based on partial least square regression method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 111-117.
[8] Linlin LIANG, Liming JIANG, Zhiwei ZHOU, Yuxing CHEN, Yafei SUN. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land & Resources, 2019, 31(2): 180-186.
[9] Yiqin YUAN, Guojin HE, Wei JIANG, Guizhou WANG. Application of earth observation system of video satellite[J]. Remote Sensing for Land & Resources, 2018, 30(3): 1-8.
[10] Ye LYU, Xiangyun HU. Road extraction by incremental Markov random field segmentation from high spatial resolution remote sensing images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 76-82.
[11] Dongyang WU, Li MA. Multi-manifold LE algorithm for dimension reduction and classification of multitemporal hyperspectral image[J]. Remote Sensing for Land & Resources, 2018, 30(2): 80-86.
[12] YIN Feng, CAO Liqin, Liang Peng. Application of improved Welsh’s color transfer algorithm to GF-2 image fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 126-131.
[13] SUN Na, GAO Zhiqiang, WANG Xiaojing, LUO Zhidong. High-precise extraction for water on the Loess Plateau region from high resolution satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 173-178.
[14] YANG Yuwei, DAI Xiaoai, NIU Yutian, LIU Hanhu, YANG Xiaoxia, LAN Yan. Inversion of leaf area index in Heihe Oasis based on CASI data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 179-184.
[15] SU Tengfei, ZHANG Shengwei, LI Hongyu. Variable scale Mean-Shift based method for cropland segmentation from high spatial resolution remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 41-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech