Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 97-104     DOI: 10.6046/zrzyyg.2021130
|
High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4
SUN Yu1(), HUANG Liang1,2(), ZHAO Junsan1,3,4, CHANG Jun5, CHEN Pengdi1, CHENG Feifei1
1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Surveying and Mapping Geo-Informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education, Kunming 650093, China
3. Key Laboratory of Geospatial Information Integration Innovation for Smart Mines, Kunming 650093, China
4. Spatial Information Integration Technology of Natural Resources in Universities of Yunnan Province, Kunming 650211, China
5. The First Geodetic Surveying Brigade of Ministry of Natural Resources, Xi’an 710054, China
Download: PDF(7326 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

As a typical and important ground target, the bridge is the vital passage between transportation lines, so automatic detection of a bridge is of great social and economic significance. Deep learning has become a new way of bridge detection, but the detection accuracy for bridges obscured by cloud and mist is low. In order to solve this problem, an automatic bridge target detection method combining Random erase (RE) data enhancement and the YOLOv4 model is proposed: firstly, the scale range of the target in the data set is determined, and the candidate frame size is obtained by K-means clustering; secondly, the cloud obscuration is simulated by a combination of RE and mosaic data enhancement; thirdly, the enhanced data set is trained by YOLOv4 network; and finally, the mean Average Precision (mAP) is used to evaluate the experimental results. The experimental results show that the detection accuracy obtained by mAP is 97.06%, which is 2.99% higher than that of traditional YOLOv4, and the average detection accuracy of bridges obscured by a cloud is improved by 12%, which verifies the effectiveness and practicability of the proposed method.

Keywords deep learning      object detection      high spatial resolution remote sensing image      bridge detection      YOLOv4 network     
ZTFLH:  P236  
Corresponding Authors: HUANG Liang     E-mail: sunyu_kust@163.com;kmhuangliang@163.com
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu SUN
Liang HUANG
Junsan ZHAO
Jun CHANG
Pengdi CHEN
Feifei CHENG
Cite this article:   
Yu SUN,Liang HUANG,Junsan ZHAO, et al. High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4[J]. Remote Sensing for Natural Resources, 2022, 34(2): 97-104.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021130     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/97
Fig.1  Flow chart of proposed method
Fig.2  Sample data set
序号 1 2 3 4 5 6 7 8 9
x 19 24 28 36 55 64 108 116 200
y 16 76 34 173 25 56 382 37 129
Tab.1  The results of k-means
Fig.3  The flow chart of random erase data augmentation
Fig.4  Schematic diagram of CIoU
模型 网络 +RE 涨点 本文涨点
SSD 61.09 66.82 5.73 35.97
Mobilenet-SSD 66.56 70.23 3.67 30.50
Centernet 82.07 84.28 2.21 14.99
Efficientdet 76.67 76.44 1.77 20.39
Retinanet 78.23 80.12 1.89 18.83
YOLOv3 93.82 95.66 1.84 3.24
YOLOv4 94.07 97.06 2.99 2.99
Tab.2  The detection results of different models
Fig.5  The detection results of YOLOv3
Fig.6  The detection results of YOLOv4
Fig.7  The detection results of proposed method
模型 常规 复杂
背景
多尺度 并行 云雾
遮挡
共含桥梁/个 5 3 19 6 8
正确检出/个 YOLOv3 4 1 18 4 3
YOLOv4 5 2 18 5 4
本文方法 5 3 19 5 8
平均检测准确度/% YOLOv3 98.25 89.00 95.81 98.00 93.33
YOLOv4 94.20 88.00 99.70 97.40 88.00
本文方法 99.80 99.50 99.59 100.00 100.00
Tab.3  Sample test results
[1] 崔东顺. 可见光航拍图像水上桥梁检测算法研究[D]. 北京: 北京理工大学, 2015.
[1] Cui D S. Research on visible light aerial image bridge detection algorithm master of science[D]. Beijing: Beijing Institute of Technology, 2015.
[2] Baker D C, Hwang S S, Aggarwal J K. Detection and segmentation of man-made objects in outdoor scenes:Concrete bridges[J]. Journal of the Optical Society of America, 1989, 6(6):938-950.
[3] 谭向程, 安道祥, 陈乐平, 等. 一种基于极化圆周SAR图像的陆上桥梁提取方法[J]. 雷达学报, 2021, 10(3):402-415.
[3] Tan X C, An D X, Chen L P, et al. A method of land bridge extraction based on polarized circumferential SAR image[J]. Chinese Journal of Radar, 2021, 10(3):402-415.
[4] 赵江洪, 张晓光, 杨璐, 等. 深度学习的遥感影像舰船目标检测[J]. 测绘科学, 2020, 45(3):110-116,134.
[4] Zhao J H, Zhang X G, Yang L, et al. Deep learning for ship target detection in remote sensing images[J]. Science of Surveying and Mapping, 2020, 45(3):110-116,134.
[5] 李淑敏, 冯权泷, 梁其椿, 等. 基于深度学习的国产高分遥感影像飞机目标自动检测[J]. 遥感技术与应用, 2018, 33(6):1095-1102.
[5] Li S M, Feng Q L, Liang Q C, et al. Automatic detection of aircraft targets in domestic high-resolution remote sensing images based on deep learning[J]. Remote Sensing Technology and Application, 2018, 33(6):1095-1102.
[6] 陈朋弟, 黄亮, 夏炎, 等. 基于Mask R-CNN的无人机影像路面交通标志检测与识别[J]. 国土资源遥感, 2020, 32(4):61-67.doi: 10.6046/gtzyyg.2020.04.09.
doi: 10.6046/gtzyyg.2020.04.09
[6] Chen P D, Huang L, Xia Y, et al. Detection and recognition of traffic signing based on Mask R-CNN image using UAV[J]. Remote Sensing of Land and Resources, 2020, 32(4):61-67.doi: 10.6046/gtzyyg.2020.04.09.
doi: 10.6046/gtzyyg.2020.04.09
[7] Chen L, Weng T, Xing J, et al. A new deep learning network for automatic bridge detection from SAR images based on balanced and attention mechanism[J]. Remote Sensing, 2020, 12 (3):441.
doi: 10.3390/rs12030441 url: https://www.mdpi.com/2072-4292/12/3/441
[8] Lomenie N, Barbeau J. Integrating textural and geometric information for an automatic bridge detection system[C]// IGARSS 2003,2003 IEEE International Geoscience and Remote Sensing Symposium.Toulouse:IEEE, 2003:3952-3954.
[9] 杨浩, 尹东, 洪日昌. 高分辨率遥感图像中桥梁自动识别方法研究[J]. 计算机仿真, 2006, 22(9):119-122.
[9] Yang H, Yin D, Hong R C. Research on automatic bridge identification method in high resolution remote sensing images[J]. Computer Simulation, 2006, 22(9):119-122.
[10] 陈爱军. 大幅面卫星遥感图像中桥梁识别算法[J]. 计算机仿真, 2014, 31(6):362-366.
[10] Chen A J. Bridge recognition algorithm in large-scale satellite remote sensing images[J]. Computer Simulation, 2014, 31(6):362-366.
[11] Hao X, Zhang G, Ma S. Deep learning[J]. International Journal of Semantic Computing, 2016, 10(3):417-439.
doi: 10.1142/S1793351X16500045 url: https://www.worldscientific.com/doi/abs/10.1142/S1793351X16500045
[12] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE, 2014:580-587.
[13] Girshick R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV).Santiago:IEEE, 2015:1440-1448.
[14] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 url: http://ieeexplore.ieee.org/document/7485869/
[15] Liu W, Anguelov D, Erhan D, et al. Ssd:Single shot multibox detector[J]. European Conference on Computer Vision, 2016, 9905:21-37.
[16] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016:779-788.
[17] Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE, 2017:6517-6525.
[18] Redmon J, Farhadi A. YOLOv3:An incremental improvement[EB/OL].(2018-04-08).[2021-03-30]. https://pjreddie.com/media/files/papers/YOLOv3.pdf.
url: https://pjreddie.com/media/files/papers/YOLOv3.pdf
[19] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4:Optimal speed and accuracy of object detection[J]. arXiv Preprint arXiv: 2020, 2004:10934.
[20] 2020 Gaofen challenge on automated high-resolution earth observation image interpretation[EB/OL]. Online: http://en.sw.chreos.org.
url: http://en.sw.chreos.org
[21] Zhong Z, Zheng L, Kang G, et al. Random erasing data augmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 34 (7):13001-13008.
doi: 10.1609/aaai.v34i07.7000 url: https://aaai.org/ojs/index.php/AAAI/article/view/7000
[22] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet:A new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Seattle:IEEE, 2020:1571-1580.
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[3] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[4] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[5] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[6] ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 213-221.
[7] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[8] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[9] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[10] TAN Hai, ZHANG Rongjun, FAN Wenfeng, ZHANG Yifang, XU Hang. Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 97-104.
[11] SU Wei, LIN Yangyang, YUE Wen, CHEN Yingbiao. Identification of mariculture areas in Guangdong Province and remote sensing monitoring of their spatial and temporal changes based on the U-Net convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(4): 33-41.
[12] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[13] ERPAN Anwar, MAMAT Sawut, MAIHEMUTI Balati. Recognition of cotton distribution based on GF-2 images and Unet model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 242-250.
[14] WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
[15] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech