Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 72-79     DOI: 10.6046/zrzyyg.2021148
|
A method for determining suitable scales for vegetation remote sensing based on the spatial distribution of leaves
WU Haobo(), WU Mengtong, YANG Siqi, FAN Wenjie(), REN Huazhong
Institute of Remote Sensing and Geographic Information System, Peking University, Beijing 100871, China
Download: PDF(2823 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

High spatial resolution remote sensing data serve as a new data source for quantitative remote sensing of vegetation, bringing in both new challenges and opportunities. The traditional leaf area index (LAI) inversion method based on the radiative transfer theory takes Beer-Lambert Law as the primary theoretical basis. The prerequisite for its application is that the leaf distribution in pixels follows a Poisson distribution. This study explored the appropriate scale in the case that the spatial distribution of continuous vegetation leaves in pixels follows a Poisson distribution. Focusing on the wheat canopy, this study used the LESS (LargE-Scale remote sensing data and image Simulation framework) software to simulate the remote sensing images of continuous wheat canopy. Based on this, this study analyzed the appropriate scale on which continuous wheat canopy leaves follow a Poisson distribution through the three-dimensional simulation of leaf canopy. Moreover, this study constructed a method for calculating the appropriate scale of the LAI inversion of continuous vegetation. The results show that the appropriate scale is influenced by the LAI value and the aggregation effect. The UAV hyperspectral data and the LAI inversion results from Luohe City, Henan Province validated the feasibility of this method.

Keywords high spatial resolution      LESS      appropriate scale     
Corresponding Authors: FAN Wenjie     E-mail: wuhb@pku.edu.cn;fanwj@pku.edu.cn
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haobo WU
Mengtong WU
Siqi YANG
Wenjie FAN
Huazhong REN
Cite this article:   
Haobo WU,Mengtong WU,Siqi YANG, et al. A method for determining suitable scales for vegetation remote sensing based on the spatial distribution of leaves[J]. Remote Sensing for Natural Resources, 2022, 34(2): 72-79.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021148     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/72
参数
投影方式 Orthographic
光子数量/像素 64
模拟波长/ nm 600,900
观测天顶角/(°) 0
观测方位角/(°) 180
传感器高度/ m 3 000
场景长度/ m 100
场景宽度/ m 100
地表反射类型 朗伯反射
Tab.1  Main scene parameter
Fig.1  Wheat and leaf model at heading stage
Fig.2  Schematic diagram of wheat distribution in simulated scenario
Fig.3  Schematic diagram of the experimental site in Luohe City
Fig.4  Drone and imaging spectrometer
Fig.5  Schematic diagram of the statistical histogram of the spatial distribution of leaves in the scene with LAI of 4.18 (resolution of 0.1 m)
Fig.6  Statistical histogram of LAI distribution at 2 m resolution
LAI真值xi f(X=xi) 频数 期望频率 χ2
0 0.015 3 32 38.25 1.021 2
1 0.064 0 163 160.00 0.056 2
2 0.133 7 336 334.40 0.007 6
3 0.186 3 468 465.93 0.009 1
4 0.194 7 497 486.90 0.209 6
5 0.162 8 395 407.05 0.356 5
6 0.113 4 289 283.58 0.103 7
7 0.067 7 177 169.34 0.346 9
合计 1 2 500 2 498 4.135 3
Tab.2  2 m resolution LAI distribution goodness of fit calculation process
Fig.7  Euclidean distance similarity curve in different scenarios
Fig.8  UAV hyperspectral image and LAI inversion results
Fig.9  Real image similarity curve
[1] Ganopolski A, Kubatzki C, Claussen M, et al. The influence of Vegetation-Atmosphere-Ocean interaction on climate during the Mid-Holocene[J]. Science, 1998, 280(5371):1916-1919.
pmid: 9632385
[2] Bonan G B, Pollard D, Thompson S L. Influence of subgrid-scale heterogeneity in leaf area index,stomatal resistance,and soil moisture on grid-scale land-atmosphere interactions[J]. Journal of Climate, 1993, 6(10):1882-1897.
doi: 10.1175/1520-0442(1993)006<1882:IOSSHI>2.0.CO;2 url: http://journals.ametsoc.org/doi/10.1175/1520-0442(1993)006<1882:IOSSHI>2.0.CO;2
[3] Baret F, Guyot G. Potentials and limits of vegetation indices for LAI and APAR assessment[J]. Remote Sensing of Environment, 1991, 35(2-3): 161-173
doi: 10.1016/0034-4257(91)90009-U url: https://linkinghub.elsevier.com/retrieve/pii/003442579190009U
[4] Bonan G B. Land-Atmosphere interactions for climate system Models: Coupling biophysical,biogeochemical,and ecosystem dynamical processes[J]. Remote Sensing of Environment, 1995, 51(1):57-73
doi: 10.1016/0034-4257(94)00065-U url: https://linkinghub.elsevier.com/retrieve/pii/003442579400065U
[5] Tang H, Brolly M, Zhao F, et al. Deriving and validating leaf area index (LAI) at multiple spatial scales through lidar remote sensing:A case study in Sierra National Forest,CA[J]. Remote Sensing of Environment, 2014, 143:131-141.
doi: 10.1016/j.rse.2013.12.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425713004471
[6] Shi Y, Wang J, Qin J, et al. An upscaling algorithm to obtain the representative ground truth of LAI time series in heterogeneous land surface[J]. Remote Sensing, 2015, 7(10):12887-12908.
doi: 10.3390/rs71012887 url: http://www.mdpi.com/2072-4292/7/10/12887
[7] José G D, Philip L, Mathias D. Efficient emulation of radiative transfer codes using gaussian processes and application to land surface parameter inferences[J]. Remote Sensing, 2016, 8(2):1-32.
doi: 10.3390/rs8010001 url: http://www.mdpi.com/2072-4292/8/1/1
[8] Lisein J, Bonnet S, Lejeune P, et al. Modélisation de la canopée forestière par photogrammétrie depuis des images acquises par drone[J]. Revue Francaise De Photogrammetrie Et De Teledetection, 2014, 206(206):45-54.
[9] 陶雪涛. 线性模型下多通道遥感图像混合像元分解方法研究[J]. 上海: 复旦大学, 2008, 14:31-41.
[9] Tao X T. Research on the decomposition method of multi-channel remote sensing image mixed pixels under linear model[J]. Shanghai:Fudan University, 2008, 14:31-41.
[10] 胡潭高, 张锦水, 贾斌, 等. 不同分辨率遥感图像混合像元线性分解方法研究[J]. 地理与地理信息科学, 2008, 24(3):20-23.
[10] Hu T G, Zhang J S, Jia B, et al. Research on the linear decomposition method of mixed pixels of remote sensing images with different resolutions[J]. Geography and Geo-Information Science, 2008, 24(3):20-23.
[11] Tian J, Le W, Li X, et al. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest[J]. International Journal of Applied Earth Observation & Geoinformation, 2017, 61:22-31.
[12] Kimura K, Yamasaki S. Accurate root length and diameter measurement using NIH Image:Use of Pythagorean distance for diameter estimation[J]. Plant & Soil, 2003, 254(2):305-315.
[13] Li W, Niu Z, Chen H, et al. Characterizing canopy structural complexity for the estimation of maize LAI based on ALS data and UAV stereo images[J]. International Journal of Remote Sensing, 2017, 38(8-10):1-11.
[14] 李小文, 王锦地. 植被光学遥感模型和植被结构参数化[M]. 北京: 科学出版社, 1995,118.
[14] Li X W, Wang J D. Vegetation optical remote sensing model and vegetation structure parameterization[M]. Beijing: Science Press, 1995,118.
[15] 唐凤莉, 刘良云. 冠层特征尺度的定量计算模型与方法[J]. 遥感学报, 2014, 18(6):1182-1188.
[15] Tang F L, Liu L Y. Canopy characteristic scale model and quantitative calculation[J]. Journal of Remote Sensing, 2014, 18(6):1182-1188.
[16] Qi J, Xie D, Yin T, et al. LESS:LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes[J]. Remote Sensing of Environment, 2019, 221:695-706.
doi: 10.1016/j.rse.2018.11.036 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718305443
[17] 徐玉华, 曾明. 泊松分布性质及应用研究[J]. 长江大学学报, 2006(4):132-133.
[17] Xu Y H, Zeng M. Poisson distribution properties and application research[J]. Journal of Yangtze University, 2006(4):132-133.
[18] Cheung G W, Rensvold R B. Evaluating Goodness-of-Fit indexes for testing measurement invariance[J]. Structural Equation Modeling, 2002, 9(2):233-255.
doi: 10.1207/S15328007SEM0902_5 url: http://www.tandfonline.com/doi/abs/10.1207/S15328007SEM0902_5
[19] 罗忠良. 基于案例推理系统中案例检索算法的探索[J]. 计算机工程与应用, 2005, 41(25):230-232.
[19] Luo Z L. Exploration of case retrieval algorithms in case-based reasoning systems[J]. Computer Engineering and Applications, 2005, 41(25):230-232.
[20] Bicheron P. A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model[J]. Remote Sensing of Environment, 1999, 67(3):251-266.
doi: 10.1016/S0034-4257(98)00083-2 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425798000832
[21] Ejegwa P A, Akubo A J, Joshua O M. Intuitionistic fuzzy set and its application in career determination via normalized euclidean distance method[J]. European Scientific Journal, 2014:69-77.
[22] 方杰, 张敏强, 李晓鹏. 中介效应的三类区间估计方法[J]. 心理科学进展, 2011, 19(5):765-774.
[22] Fang J, Zhang M Q, Li X P. Three types of interval estimation methods for mediating effects[J]. Advances in Psychological Science, 2011, 19(5):765-774.
[23] Fan W J, Xu X R. A method for blind separation of components information from mixed pixel[J]. Progress in Natural Science, 2006(16):760-765.
[24] Fan W J, Xu X R, Liu X, et al. Accurate LAI retrieval method based on PROBA/CHRIS data[J]. Hydrology and Earth System Sciences Discussions, 2009, 6(6):7001-7024.
[1] HU Chenxia, ZOU Bin, LIANG Yu, HE Chencheng, LIN Zhijia. Spatio-temporal evolution of gross ecosystem product with high spatial resolution: A case study of Hunan Province during 2000—2020[J]. Remote Sensing for Natural Resources, 2023, 35(3): 179-189.
[2] SUN Yu, HUANG Liang, ZHAO Junsan, CHANG Jun, CHEN Pengdi, CHENG Feifei. High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4[J]. Remote Sensing for Natural Resources, 2022, 34(2): 97-104.
[3] Shicai ZHU, Xiaotong ZHAI, Zongwei WANG. Segmentation of large scale remote sensing image based on Mean Shift[J]. Remote Sensing for Land & Resources, 2020, 32(1): 13-18.
[4] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
[5] Baoquan WEI, Anning SUO, Ying LI, Jianhua ZHAO. Research on the application of LBV transformation in domestic ZY-3 satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(3): 87-94.
[6] Xianlei FAN, Hongbo YAN, Ying QU. Comparison and validation of the methods for estimating surface albedo from HJ-1 A/B CCD data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 123-131.
[7] Linlin LIANG, Liming JIANG, Zhiwei ZHOU, Yuxing CHEN, Yafei SUN. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land & Resources, 2019, 31(2): 180-186.
[8] Ye LYU, Xiangyun HU. Road extraction by incremental Markov random field segmentation from high spatial resolution remote sensing images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 76-82.
[9] Xiaogang HOU, Zhaojun ZHENG, Shuai LI, Xuehua CHEN, Yu CUI. Generation of daily cloudless snow cover product in the past 15 years in Xinjiang and accuracy validation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 214-222.
[10] YIN Feng, CAO Liqin, Liang Peng. Application of improved Welsh’s color transfer algorithm to GF-2 image fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 126-131.
[11] SUN Na, GAO Zhiqiang, WANG Xiaojing, LUO Zhidong. High-precise extraction for water on the Loess Plateau region from high resolution satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 173-178.
[12] SU Tengfei, ZHANG Shengwei, LI Hongyu. Variable scale Mean-Shift based method for cropland segmentation from high spatial resolution remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 41-50.
[13] YANG Qingshan, ZHANG Hua. A new method for classification of high spatial resolution remotely sensed imagery based on fusion of shape and spectral information of pixels[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 64-70.
[14] DENG Zeng, LI Dan, KE Yinghai, WU Yanchen, LI Xiaojuan, GONG Huili. An improved SVM algorithm for high spatial resolution remote sensing image classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 12-18.
[15] FAN Dongfu, YANG Shuyun, WU Biwen, FAN Dongqing, WANG Jun, JIANG Bo, CHEN Xiaolong. Monitoring of biomass burning based on AOD[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 133-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech