Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 62-67     DOI: 10.6046/zrzyyg.2023211
|
A method for 3D modeling of trees based on terrestrial LiDAR point cloud
WAN Lihong1,2(), CAO Zhenyu1,3, TIAN Zhilin2, SHI Yanli1
1. Sichuan Basic Geographic Information Center, Ministry of Natural Resources, Chengdu 610041,China
2. School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
3. Technology Innovation Center of Emergency Surveying and Mapping, Ministry of Natural Resources, Chengdu 610041,China
Download: PDF(2205 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

To capture information about the 3D geometric structures of trees more effectively and address the challenge of high-precision, high-fidelity tree reconstruction, this study proposed a method for 3D modeling of trees based on terrestrial LiDAR point cloud. To overcome the occlusion caused by leaf gaps in TLS, this method fully considered the aggregation of leaves, as well as the morphological characteristics of both leaves and branches. By conducting the model fitting and reconstruction of tree leaves and branches using Delaunay triangulation and Alpha-shape algorithm, respectively, the proposed method effectively addressed previous issues such as unrealistic tree structures and imprecise organ modeling, thus achieving the 3D reconstruction of individual tree leaves and small branches efficiently. This study holds great significance for determining forest structural parameters and managing resources, while also offering a valuable reference for component-level real scene 3D modeling of typical trees.

Keywords terrestrial laser scanning      point cloud      branch and leaf separation      3D real scene      tree 3D reconstruction     
ZTFLH:  TP79  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lihong WAN
Zhenyu CAO
Zhilin TIAN
Yanli SHI
Cite this article:   
Lihong WAN,Zhenyu CAO,Zhilin TIAN, et al. A method for 3D modeling of trees based on terrestrial LiDAR point cloud[J]. Remote Sensing for Natural Resources, 2025, 37(1): 62-67.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023211     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/62
Fig.1  Flowchart for research technology
Fig.2  Leaf cluster Euclidean distance clustering result
Fig.3  Tree leaf modeling result
Fig.4  Tree Branch Modeling Result
Fig.5  Tree 3D modeling result
[1] 黄洪宇, 陈崇成, 邹杰, 等. 基于地面激光雷达点云数据的单木三维建模综述[J]. 林业科学, 2013, 49(4):123-130.
[1] Huang H Y, Chen C C, Zou J, et al. Tree geometrical 3D modeling from terrestrial laser scanned point clouds:A review[J]. Scientia Silvae Sinicae, 2013, 49(4):123-130.
[2] 张天安, 云挺, 薛联凤, 等. 基于地面激光雷达的活立木枝干三维建模[J]. 南京林业大学学报(自然科学版), 2015, 39(4):163-167.
doi: 10.3969/j.issn.1000-2006.2015.04.028
[2] Zhang T A, Yun T, Xue L F, et al. A new 3D modeling method for branches of standing trees based on point cloud data of terrestrial laser scanning[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(4):163-167.
[3] 卢军, 刘宪钊, 孟维亮, 等. 基于地面激光点云数据的单木三维重建方法[J]. 南京林业大学学报(自然科学版), 2021, 45(6):193-199.
doi: 10.12302/j.issn.1000-2006.202006016
[3] Lu J, Liu X Z, Meng W L, et al. Methodology of individual tree 3D reconstruction based on terrestrial laser scanning point cloud data[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(6):193-199.
[4] 王向玉, 谢东辉, 汪艳, 等. 基于地面激光雷达点云数据的单木三维重建[J]. 遥感技术与应用, 2015, 30(3):455-460.
doi: 10.11873/j.issn.1004-0323.2015.3.0455
[4] Wang X Y, Xie D H, Wang Y, et al. 3D reconstruction of a single tree from terrestrial laser scanner data[J]. Remote Sensing Technology and Application, 2015, 30(3):455-460.
[5] Cheng Z L, Zhang X P, Chen B Q. Simple reconstruction of tree branches from a single range image[J]. Journal of Computer Science and Technology, 2007, 22(6):846-858.
[6] 苏中花. 基于地面激光雷达点云数据的单木三维建模[D]. 成都: 成都理工大学, 2019.
[6] Su Z H. Three-dimensional model of individual tree based on terrestrial LiDAR scanner point cloud data[D]. Chengdu: Chengdu University of Technology, 2019.
[7] 王晓辉. 基于地面激光雷达点云的单树三维几何建模研究[D]. 福州: 福州大学, 2014.
[7] Wang X H. Three dimensional geometrical modeling of individual tree from terrestrial LiDAR scanner point cloud[D]. Fuzhou: Fuzhou University, 2014.
[8] 段芸杉. 基于激光雷达点云数据的单木建模综述[J]. 测绘与空间地理信息, 2022, 45(5):80-82.
[8] Duan Y S. Overview of single tree modeling based on LiDAR point clouds data[J]. Geomatics & Spatial Information Technology, 2022, 45(5):80-82.
[9] 李萍, 冯仲科, 苏珏颖. 定量结构模型的地面激光雷达单木分割应用[J]. 测绘科学, 2022, 47(2):151-156,199.
[9] Li P, Feng Z K, Su J Y. Application of quantitative structure model in TLS single wood segmentation[J]. Science of Surveying and Mapping, 2022, 47(2):151-156,199.
[10] 傅根深, 陈健, 黄庆丰, 等. 基于地基激光雷达的单木森林参数提取分析[J]. 安徽农业科学, 2022, 50(4):128-131.
[10] Fu G S, Chen J, Huang Q F, et al. Extraction and analysis of forest parameters for individual tree based on terrestrial laser scanning[J]. Journal of Anhui Agricultural Sciences, 2022, 50(4):128-131.
[11] 林筱涵, 李爱农, 边金虎, 等. 基于网络图的地基激光雷达复杂树木点云枝叶分离方法[J]. 遥感技术与应用, 2022, 37(1):161-172.
doi: 10.11873/j.issn.1004-0323.2022.1.0161
[11] Lin X H, Li A N, Bian J H, et al. A method for separating leaf and wood components of complex tree point cloud data based on network graph with terrestrial laser scanning[J]. Remote Sensing Technology and Application, 2022, 37(1):161-172.
[12] 廖晓和. 基于车载点云数据的树木提取与分析[J]. 测绘通报, 2020(11):163-166.
doi: 10.13474/j.cnki.11-2246.2020.0378
[12] Liao X H. Tree extraction and analysis based on vehicle point cloud data[J]. Bulletin of Surveying and Mapping, 2020(11):163-166.
doi: 10.13474/j.cnki.11-2246.2020.0378
[13] 李庆, 高祥伟, 费鲜芸, 等. 利用Alpha-shape算法进行树冠三维模型构建[J]. 测绘通报, 2018(12):91-95.
doi: 10.13474/j.cnki.11-2246.2018.0390
[13] Li Q, Gao X W, Fei X Y, et al. Construction of tree crown three-dimensional model using alpha-shape algorithm[J]. Bulletin of Surveying and Mapping, 2018(12):91-95.
doi: 10.13474/j.cnki.11-2246.2018.0390
[14] 付昱兴, 李承明, 朱江, 等. Alpha-shape算法构建枣树点云三维模型[J]. 农业工程学报, 2020, 36(22):214-221.
[14] Fu Y X, Li C M, Zhu J, et al. Three-dimensional model construction method and experiment of jujube tree point cloud using Alpha-shape algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22):214-221.
[15] 张波, 刘红伟, 裴小节. 基于三维激光点云数据建立三维树木模型方法的研究[J]. 安徽农业科学, 2011, 39(33):20904-20905,20930.
[15] Zhang B, Liu H W, Pei X J. Research on the method of building 3D tree model based on 3D laser point cloud data[J]. Journal of Anhui Agricultural Sciences, 2011, 39(33):20904-20905,20930.
[1] WANG Zongwei, LU Minyan, FAN Yilin. Precise mapping of open beach areas by combining laser point clouds and stereo optical satellite imagery[J]. Remote Sensing for Natural Resources, 2024, 36(4): 135-141.
[2] MA Weifeng, WU Xiaodong, WANG Chong, WEN Ping, WANG Jinliang, CAO Lei, XIAO Zhenglong. A spherical coordinate integration method for extracting crown volumes of individual trees based on the TLS point clouds[J]. Remote Sensing for Natural Resources, 2024, 36(3): 81-87.
[3] CUI Ziwei, XU Wenxue, LIU Yanxiong, GUO Yadong, MENG Xiangqian, JIANG Zhengkun. Current status of the acquisition and processing of airborne laser sounding data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 1-9.
[4] WANG Liying, MA Xuwei, YOU Ze, WANG Shichao, CAMARA Mahamadou. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM[J]. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
[5] ZHANG Tian, ZHOU Zhongfa, WANG Lingyu, ZHAO Xin, ZHANG Wenhui, ZHANG Shu, WANG Yu. A method for soil roughness measurement based on UAV point cloud data[J]. Remote Sensing for Natural Resources, 2023, 35(1): 115-122.
[6] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[7] Peiting LI, Qingzhan ZHAO, Wenzhong TIAN, Yongjian MA. Point cloud simplification method combining K-means++ clustering with UAV LiDAR point cloud normal vectors[J]. Remote Sensing for Land & Resources, 2020, 32(2): 103-110.
[8] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[9] Juntao ZHU, Lei WANG, Chuan ZHAO, Xudong ZHENG. Point cloud segmentation on the roof of complicated building based on the algorithm of region growing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 20-25.
[10] Ying LI, Haiyang YU, Yan WANG, Jianpeng WU, Li YANG. Classification of urban vegetation based on unmanned aerial vehicle reconstruction point cloud and image[J]. Remote Sensing for Land & Resources, 2019, 31(1): 149-155.
[11] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[12] Xue HE, Zhengrong ZOU, Yunsheng ZHANG, Shouji DU, Te ZHENG. Object-oriented classification method for oblique photogrammetric point clouds[J]. Remote Sensing for Land & Resources, 2018, 30(2): 87-92.
[13] LI Yunfan, TAN Debao, LIU Rui, WU Jianwei. An improved RANSAC algorithm for building point clouds segmentation in consideration of roof structure[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 20-25.
[14] LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
[15] WANG Xudong, DUAN Fuzhou, QU Xinyuan, LI Dan, YU Panfeng. Building extraction based on UAV imagery data with the synergistic use of objected-based method and SVM classifier[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 97-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech