Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (3) : 162-169     DOI: 10.6046/zrzyyg.2023396
|
Data acquisition and application of lightweight unmanned aerial vehicles in satellite image-based law enforcement for minerals
CHEN Dong(), YANG Jinzhong, WANG Jie, LIU Qiong, ZHAO Yuling, LI Xiangyi()
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(4083 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In satellite image-based law enforcement for minerals, using unmanned aerial vehicles (UAVs) for investigation and aerial photography in mining areas with complex geographic conditions and unknown staffing situations, and photogrammetry for three-dimensional modeling of mining areas serves as an effective means to ensure the personal safety of field workers and improve work efficiency and accuracy. Lightweight UAVs are more applicable to satellite image-based law enforcement for highly mobile minerals due to their flexible take-off and landing conditions and high maneuverability while ensuring shooting clarity and modeling data requirements. Based on the UAV aerial survey results of several mining faces in Liaoning Province, this study demonstrates that satellite image-based law enforcement for minerals assisted by lightweight UAVs can significantly improve the efficiency and safety of fieldwork. Moreover, the modeling results provide data support for subsequent accurate survey and analysis and multi-temporal monitoring in mining areas.

Keywords lightweight unmanned aerial vehicle (UAV)      satellite image-based law enforcement for minerals      photogrammetry     
ZTFLH:  TP79  
Issue Date: 01 July 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dong CHEN
Jinzhong YANG
Jie WANG
Qiong LIU
Yuling ZHAO
Xiangyi LI
Cite this article:   
Dong CHEN,Jinzhong YANG,Jie WANG, et al. Data acquisition and application of lightweight unmanned aerial vehicles in satellite image-based law enforcement for minerals[J]. Remote Sensing for Natural Resources, 2025, 37(3): 162-169.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023396     OR     https://www.gtzyyg.com/EN/Y2025/V37/I3/162
Fig.1  Aerial survey technology of UAV
Fig.2  Technical route of aerial survey modeling for UAV
参数 数值
尺寸(折叠)/mm 214×91×84(长×宽×高)
尺寸(展开)/mm 322×242×84(长×宽×高)
对角线轴距/mm 354
最大水平飞行速度(海平面附近无风)/(km·h-1) 72(S模式)
最大起飞海拔/m 6 000
最长飞行时间(无风环境)/min 31(25 km/h匀速飞行)
最长悬停时间(无风环境)/min 29
最大续航里程(无风环境)/km 18(50 km/h匀速飞行)
最大抗风等级 5级
起飞质量/g 907
影像传感器 1英寸CMOS
有效像素 2 000万
镜头视角/(°) 77
等效焦距/mm 28
Tab.1  Main parameters of DJI Mavic 2 Pro
Fig.3  Indication of airline flight function
Fig.4  Photos taken in mine area
Fig.5  Videos taken in mine area
Fig.6  Photo taken at the take-off and landing point
Fig.7  Airline and parameters of oblique photogrammetry
Fig.8  Diagram of the relationship between take-off and landing point (yellow area) and mining pit (red area)
Fig.9  Airline and parameters of orthographic photogrammetry
Fig.10  Diagram of the relationship between take-off and landing point (yellow area) and mining pit (red area)
Fig.11  The model converted to SLPK format and covered by vector data
现场 无人机飞行
拍照 视频建模 正射影像建模 倾斜摄影建模
12.6 3.7 5.3 9.1 43.5
Tab.2  Time comparison of different methods(min)
取证方式 现场 无人机飞行
拍照 视频建模 正射影像建模 倾斜摄影建模
无证开采
取证
越界开采
取证
Tab.3  Effect comparison of different methods
取证方式 现场 无人机飞行
拍照 视频建模 正射影像建模 倾斜摄影建模
方量量测 不可
精细程度
Tab.4  Finess comparison of different methods
Fig.12  Intuitive comparison of finess
[1] 王甲乙, 侯照亮, 蔡全胜, 等. 无人机在露天金矿区地质填图中的应用[J]. 黄金, 2022, 43(10):4-10.
[1] Wang J Y, Hou Z L, Cai Q S, et al. Application of UAV in open-pit gold district geological field mapping[J]. Gold, 2022, 43(10):4-10.
[2] 崔宏兵, 焦殿阳. 无人机三维建模在矿山执法检查工作中的应用[J]. 测绘与空间地理信息, 2023, 46(7):164-166.
[2] Cui H B, Jiao D Y. Application of UAV 3D modeling in mine law enforcement inspections[J]. Geomatics & Spatial Information Technology, 2023, 46(7):164-166.
[3] 陈浩. 深析无人机测绘技术在矿山监测中的应用研究[J]. 中国金属通报, 2022(9):174-176.
[3] Chen H. Research on the application of UAV surveying and mapping technology in mine monitoring[J]. China Metal Bulletin, 2022(9):174-176.
[4] 宋铁军. 矿山治理工作中应用无人机倾斜摄影测量技术的方法[J]. 中国金属通报, 2023(3):134-136.
[4] Song T J. Application of UAV tilt photogrammetry technology in mine management[J]. China Metal Bulletin, 2023(3):134-136.
[5] 王凯, 王莹, 常勤慧. 无人机倾斜摄影测量在矿山监测中的应用策略分析——以河南A矿山为例[J]. 装备制造技术, 2023(5):240-243.
[5] Wang K, Wang Y, Chang Q H. Application strategy analysis of UAV tilt photogrammetry in mine monitoring—Taking Henan A mine as an example[J]. Equipment Manufacturing Technology, 2023(5):240-243.
[6] 向杰, 陈建平, 李诗, 等. 无人机遥感技术在北京首云铁矿储量动态监测中的应用[J]. 国土资源遥感, 2018, 30(3):224-229.doi: 10.6046/gtzyyg.2018.03.30.
[6] Xiang J, Chen J P, Li S, et al. Research on application of unmanned aerial vehicle technology to dynamic monitoring of reserves in the Shouyun iron mine,Beijing[J]. Remote Sensing for Land and Resources, 2018, 30(3):224-229.doi: 10.6046/gtzyyg.2018.03.30.
[7] 王珏, 郭振, 张志卫, 等. 基于倾斜摄影测量的三维景观指数构建——以山东田横岛为例[J]. 自然资源遥感, 2023, 35(2):112-121.doi: 10.6046/zrzyyg.2022163.
[7] Wang J, Guo Z, Zhang Z W, et al. Construction of 3D landscape indices based on tilt photogrammetry:A case study of Tianheng Island in Shandong Province[J]. Remote Sensing for Natural Resources, 2023, 35(2):112-121.doi: 10.6046/zrzyyg.2022163.
[8] Liu J, Liu H, Liu R, et al. Application of aeromagnetic survey to mineral exploration of Jinping,Yunnan,China by using multirotor UAV[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(5): 1550-1558.
[9] 闫驰, 焦润成, 曹颖, 等. 无人机倾斜摄影在泥石流灾害识别分析中的应用——以北京房山区史家营曹家坊泥石流为例[J]. 国土资源遥感, 2020, 32(4):251-257.doi:10.6046/gtzyyg.2020.04.31.
[9] Yan C, Jiao R C, Cao Y, et al. The application of UAV oblique photography in debris flow disaster identification and analysis:Taking the debris flow in Caojiafang,Shijiaying,FangshanDistrict,Beijing as an example[J]. Remote Sensing for Land and Resources, 2020, 32(4):251-257.doi:10.6046/gtzyyg.2020.04.31.
[10] Cao D, Zhang B, Zhang X, et al. Optimization methods on dynamic monitoring of mineral reserves for open pit mine based on UAV oblique photogrammetry[J]. Measurement, 2023,207:112364.
[11] 李建强. 基于无人机技术的金属矿山地形测绘方法[J]. 中国金属通报, 2023(2):207-209.
[11] Li J Q. Topographic mapping method of metal mines based on UAV technology[J]. China Metal Bulletin, 2023(2):207-209.
[12] 王海成, 温富春, 杨胜兵, 等. 无人机三维扫描实景建模技术的应用探讨[J]. 中文科技期刊数据库(全文版)自然科学, 2023(9):76-78.
[12] Wang H C, Wen F C, Yang S B, et al. Discussion on the application of 3D scanning real scene modeling technology of UAV[J]. Database of Chinese Sci-tech Journals (full-text Edition) Natural Science, 2023(9):76-78.
[13] 卜全民, 赵小乔, 李涛. 无人机倾斜摄影三维实景建模及其优化技术研究[J]. 江苏警官学院学报, 2022, 37(3):122-128.
[13] Bu Q M, Zhao X Q, Li T. Research on 3D reality modeling and optimization technology of UAV oblique photography[J]. Journal of Jiangsu Police Institute, 2022, 37(3):122-128.
[14] 张明明. 矿山测量中无人机测绘技术的应用探讨[J]. 世界有色金属, 2023(7):22-24.
[14] Zhang M M. Discussion on the application of UAV surveying and mapping technology in mine survey[J]. World Nonferrous Metals, 2023(7):22-24.
[15] 宋增巡. 矿山测量中无人机航测系统的应用分析[J]. 矿业装备, 2023(3):186-187.
[15] Song Z X. Application analysis of UAV aerial survey system in mine survey[J]. Mining Equipment, 2023(3):186-187.
[16] 唐小明. 无人机航测系统在地质测绘领域的实践探索[J]. 四川建材, 2021, 47(12):43-44.
[16] Tang X M. Practice and exploration of UAV aerial survey system in geological surveying and mapping field[J]. Sichuan Building Materials, 2021, 47(12):43-44.
[17] 侯中伟, 张昭云. 无人机航测在矿山测绘中的运用分析[J]. 世界有色金属, 2018(5):35,37.
[17] Hou Z W, Zhang Z Y. Application and analysis of unmanned aerial vehicle aerial survey in mine surveying and mapping[J]. World Nonferrous Metals, 2018(5):35,37.
[18] 张登波, 钱玉国. 无人机航摄系统及其在矿山执法中的应用[J]. 江西测绘, 2015(4):45-46.
[18] Zhang D B, Qian Y G. UAV aerial photography system and its application in mine law enforcement[J]. Jiangxi Cehui, 2015(4):45-46.
[19] 樊冠嵩. 无人机航摄在矿山测绘中的应用研究[J]. 信息化建设, 2016(6):341.
[19] Fan G S. Research on the application of UAV aerial photography in mine surveying and mapping[J]. Informatization Construction, 2016(6):341.
[1] CHEN Kai, WANG Chun, DAI Wen, SHENG Yehua, LIU Aili, TANG Guoan. Factors influencing the terrain modeling accuracy of UAV photogrammetry based on Monte Carlo tests of control points[J]. Remote Sensing for Natural Resources, 2023, 35(3): 107-115.
[2] WANG Jue, GUO Zhen, ZHANG Zhiwei, XU Wenxue, XU Hao. Construction of 3D landscape indices based on tilt photogrammetry: A case study of Tianheng Island in Shandong Province[J]. Remote Sensing for Natural Resources, 2023, 35(2): 112-121.
[3] ZHANG Tian, ZHOU Zhongfa, WANG Lingyu, ZHAO Xin, ZHANG Wenhui, ZHANG Shu, WANG Yu. A method for soil roughness measurement based on UAV point cloud data[J]. Remote Sensing for Natural Resources, 2023, 35(1): 115-122.
[4] BI Weihua, ZHAO Xingtao, YANG Huachao, BIAN Hefang, ZHANG Qiuzhao. Research on smartphone based UAV low-altitude oblique photogrammetry system and its applications[J]. Remote Sensing for Land & Resources, 2021, 33(2): 248-255.
[5] Zhongdi YU, Hui LI, Fang BA, Zhaoyang WANG. 3D city model construction based on a consumer-grade UAV[J]. Remote Sensing for Land & Resources, 2018, 30(2): 67-72.
[6] ZHOU Hanghang, ZOU Zhengrong, ZHANG Yunsheng, ZHENG Te. Facade extraction from oblique point cloud considering geometrical and color information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 43-48.
[7] MA Jing, LIU Xianglei. Application of 3D visualization to the reconstruction of urban old districts[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 170-174.
[8] WANG Jian-Chao, GUO Da-Hai, ZHENG Xiong-Wei. THE DESIGN AND IMPLEMENTATION OF SOFTWARE AeroDG[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 28-32.
[9] WANG Jian-Chao, GUO Da-Hai, ZHENG Xiong-Wei. ACCURACY ANALYSIS OF AIRBORNE POS-SUPPORTED PHOTOGRAMMETRY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 33-37.
[10] ZHENG Xiong-Wei, WANG Jian-Chao, GUO Da-Hai, ZHANG Zong-Gui. QUICK COMPILATION OF DOM BASED ON POS DIRECT ORIENTATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 51-53.
[11] GUO Da-Hai, WU Li-Xin, WANG Jian-Chao, ZHENG Xiong-Wei. THE APPLICATION OF IMU/DGPS-SUPPORTED PHOTOGRAMMETRY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(1): 51-55.
[12] GUO Da-hai, WU Li-xin, WANG Jian-chao, ZHENG Xiong-wei . A PRELIMINARY DISCUSSION ON DIRECT GEOREFERENCING OF INTEGRATED GPS/IMU[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(2): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech