Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (3) : 192-202     DOI: 10.6046/zrzyyg.2024011
|
Exploring the dynamic evolution of vegetation cover in Xichuan County, Henan Province by integrating multisource remote sensing data
GE Liling1(), WANG Lu2()
1. Henan Provincial National Land Space Survey and Planning Institute, Zhengzhou 450016, China
2. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
Download: PDF(4385 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Xichuan County serves as a primary water source area for the middle route of the South-to-North Water Diversion Project. Investigating the spatiotemporal variations and driving mechanism of vegetation cover in Xichuan County is significant for the ecological restoration of the county and the environmental protection of the water source area for the middle route. Based on available Landsat and MODIS data, this study constructed long time-series fractional vegetation cover (FVC) data for Xichuan County from 2002 to 2022 using the spatiotemporal adaptive reflection fusion model (STARFM) and the dimidiate pixel model. In combination with regression and trend analyses, the geodetector model, and correlation analysis, this study explored the spatiotemporal variations and driving mechanism of vegetation cover in Xichuan County during the study period. The results indicate that the coefficient of determination (R2) between the STARFM-reconstructed and real annual-scale FVC reached 0.914, an improvement of 0.05 compared to 0.864 under conditions of data missing. Therefore, the STARFM can provide a reliable data basis for more accurately investigating the dynamic evolution of vegetation cover in Xichuan County. From 2002 to 2022, the vegetation cover in Xichuan County was ordinary, with an average FVC value of 0.516, characterized by higher vegetation cover in the northwest compared to the southeast. The vegetation cover in Xichuan County showed an overall improvement trend, with an improved area representing 76.02 %, primarily covering the northwestern and southeastern portions of Xichuan County. In contrast, the degraded area represented 23.98 %, primarily covering the areas surrounding the Danjiangkou reservoir, Danjiang River, and Xishui branch. The spatial heterogeneity of vegetation cover in Xichuan County was predominantly influenced by elevation and slope, followed by soil type and average temperature, with minimal impacts from soil texture and average rainfall. The improvement and degradation of vegetation cover in Xichuan County were principally caused by anthropogenic factors, with minimal influence from climate factors. The primary anthropogenic factor denotes the middle route of the South-to-North Water Diversion Project, which contributed significantly to vegetation growth rather than inhibitory effects.

Keywords Xichuan County      middle route of the South-to-North Water Diversion Project      spatiotemporal adaptive reflection fusion model (STARFM)      fractional vegetation cover (FVC)     
ZTFLH:  TP79  
Issue Date: 01 July 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liling GE
Lu WANG
Cite this article:   
Liling GE,Lu WANG. Exploring the dynamic evolution of vegetation cover in Xichuan County, Henan Province by integrating multisource remote sensing data[J]. Remote Sensing for Natural Resources, 2025, 37(3): 192-202.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024011     OR     https://www.gtzyyg.com/EN/Y2025/V37/I3/192
Fig.1  Geographic location of the study area
波段类型 Landsat4—5 TM Landsat7 ETM+ Landsat8—9 OLI
波段 波长/μm 波段 波长/μm 波段 波长/μm
近红外
(NIR)
B4 0.76~0.90 B4 0.76~0.96 B5 0.85~0.88
红波段
(Red)
B3 0.63~0.69 B3 0.62~0.69 B4 0.64~0.67
Tab.1  Detailed description of the used bands of Landsat data
波段 波长/μm
B2 0.84~0.87
B1 0.62~0.67
Tab.2  Detailed description of MOD13Q1 data
月份 2002年 2004年 2006年 2008年 2010年 2012年 2014年 2016年 2018年 2020年 2022年
4 04/02 04/29 04/26 04/16 04/16 04/06
5 05/04 05/17 05/23 05/12 05/02 05/29 05/03
6 06/13 06/16 06/05 06/27 08/14 06/30 06/28
7 07/07 07/04 09/04 07/08 07/29
8 08/16 08/09
9 09/01 09/22 08/09 09/23 09/18
10 10/27 10/08 10/14 10/18
Tab.3  Landsat image dataset information
月份 2002年 2004年 2006年 2008年 2010年 2012年 2014年 2016年 2018年 2020年 2022年
4 04/06 04/06 04/07 04/06 04/07
5 05/08 05/08 05/09 05/08
6 06/09 06/10 06/09 06/10
7 07/12 07/11 07/12 07/12 07/11 07/12
8 08/12 08/13 08/12 08/13 08/12 08/12 08/12 08/13 08/13
9 09/14 09/14 09/14 09/14 09/14 09/14
10 10/15 10/16 10/15 10/16 10/15 10/16 10/15
Tab.4  MODIS image dataset information
Fig.2  Experiments to validate the effectiveness of the STARFM method
Fig.3  Scatter plots of validation experiments of the validity of the STARFM method
Fig.4  Long time series FVC dataset in Xichuan County from 2002 to 2022
Fig.5  Spatial distribution of vegetation in Xichuan County from 2002 to 2022
Fig.6  Inter-annual variation curve of FVC in Xichuan County from 2002 to 2022
Fig.7  Trends of FVC in Xichuan County from 2002 to 2022
驱动因子 X1 X2 X3 X4 X5 X6
q 0.234 0.175 0.259 0.152 0.359 0.302
Tab.5  Risk factor detection results of spatial variability of vegetation in Xichuan County
变化趋势的
显著性
变化趋势的
正负
复相关性的
显著性
驱动因素的判断结果
P≥0.05 未变化区域
P<0.05 Slope≥0 P≥0.05 人为造成的退化
P≥0.05 人为造成的改善
Slope<0 P<0.05 人为和气候造成的退化
P<0.05 人为和气候造成的改善
Tab.6  Criteria for determining the drivers of vegetation growth change in Xiechuan County
Fig.8  Judgment results of drivers of vegetation growth changes in Xichuan County
[1] 吴昌广, 周志翔, 肖文发, 等. 基于MODIS NDVI的三峡库区植被覆盖度动态监测[J]. 林业科学, 2012, 48(1):22-28.
[1] Wu C G, Zhou Z X, Xiao W F, et al. Dynamic monitoring of vegetation coverage in Three Gorges Reservoir Area based on MODIS NDVI[J]. Scientia Silvae Sinicae, 2012, 48(1):22-28.
[2] 李佳, 廉振强, 窦明, 等. 丹江库区水质时空分布特征及影响因素[J]. 南水北调与水利科技(中英文), 2023, 21(1):181-189.
[2] Li J, Lian Z Q, Dou M, et al. Spatio-temporal distribution characteristics of water quality and influencing factors in Danjiang Reservoir Area[J]. South-to-North Water Transfers and Water Science & Technology, 2023, 21(1):181-189.
[3] 肖玉娜, 程靖华, 莫晓聪, 等. 丹江口水库浮游植物群落时空变化及其与环境因子的关系[J]. 湖泊科学, 2023, 35(3):821-832.
[3] Xiao Y N, Cheng J H, Mo X C, et al. Spatio-temporal variation of phytoplankton community and its relationship with environmental factors in Danjiangkou Reservoir[J]. Journal of Lake Sciences, 2023, 35(3):821-832.
[4] 崔囤月, 王世东, 张学军. 1991—2021年雄安新区土地利用与植被覆盖变化遥感研究[J]. 自然资源遥感, 2023, 35(4):214-225.doi:10.6046/zrzyyg.2022311.
[4] Cui D Y, Wang S D, Zhang X J. A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021[J]. Remote Sensing for Natural Resources, 2023, 35(4):214-225.doi:10.6046/zrzyyg.2022311.
[5] Chu H, Venevsky S, Wu C, et al. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015[J]. Science of the Total Environment, 2019,650:2051-2062.
[6] Guo Y, Zhang X, Wang Q, et al. Temporal changes in vegetation around a shale gas development area in a subtropical Karst Region in southwestern China[J]. Science of the Total Environment, 2020,701:134769.
[7] 钟安亚, 鲍铖, 胡春明. 生态修复视角下德兴市矿区NDVI时空动态变化监测研究[J]. 环境工程, 2024, 42(5):122-130.
[7] Zhong A Y, Bao C, Hu C M. Spatiotemporal dynamic change monitoring of NDVI in mining areas of Dexing from the perspective of ecological restoration[J]. Environmental Engineering, 2024, 42(5):122-130.
[8] Huo H, Sun C. Spatiotemporal variation and influencing factors of vegetation dynamics based on Geodetector:A case study of the northwestern Yunnan Plateau,China[J]. Ecological Indicators, 2021,130:108005.
[9] 缪丽娟, 张宇阳, 揣小伟, 等. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10):1375-1385.
doi: 10.17521/cjpe.2022.0474
[9] Miao L J, Zhang Y Y, Chuai X W, et al. Effects of climatic factors and their time-lag on grassland NDVI in Asian drylands[J]. Chinese Journal of Plant Ecology, 2023, 47(10):1375-1385.
[10] 王思, 张路路, 林伟彪, 等. 基于MODIS-归一化植被指数的广东省植被覆盖与土地利用变化研究[J]. 生态学报, 2022, 42(6):2149-2163.
[10] Wang S, Zhang L L, Lin W B, et al. Study on vegetation coverage and land-use change of Guangdong Province based on MODIS-NDVI[J]. Acta Ecologica Sinica, 2022, 42(6):2149-2163.
[11] 彭文甫, 张冬梅, 罗艳玫, 等. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9):1758-1776.
doi: 10.11821/dlxb201909005
[11] Peng W F, Zhang D M, Luo Y M, et al. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Pro-vince[J]. Acta Geographica Sinica, 2019, 74(9):1758-1776.
[12] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4):258-264.doi:10.6046/zrzyyg.2021019.
[12] Jin C M, Yang X W, Jing H T. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4):258-264.doi:10.6046/zrzyyg.2021019.
[13] 赵冬林, 朱仕荣. 2010—2021年金沙江干热河谷植被覆盖度时空变化及其影响因素[J]. 生态学杂志, 2024, 43(8):2373-2381.
[13] Zhao D L, Zhu S R. Spatiotemporal variation of vegetation coverage and its influencing factors in the dry-hot valley of Jinsha River during 2010—2021[J]. Chinese Journal of Ecology, 2024, 43(8):2373-2381.
[14] 刘雨亭, 王磊, 李谢辉, 等. 西南地区2000—2020年植被覆盖度时空变化与影响因素分析[J]. 高原气象, 2024, 43(1):264-276.
doi: 10.7522/j.issn.1000-0534.2023.00052
[14] Liu Y T, Wang L, Li X H, et al. Analysis on spatio-temporal variability of fractional vegetation cover and influencing factors from 2000 to 2020 in southwestern China[J]. Plateau Meteorology, 2024, 43(1):264-276.
doi: 10.7522/j.issn.1000-0534.2023.00052
[15] Jiang W, Yuan L, Wang W, et al. Spatio-temporal analysis of vegetation variation in the Yellow River Basin[J]. Ecological Indicators, 2015,51:117-126.
[16] Zhai H, Huang F, Qi H. Generating high resolution LAI based on a modified FSDAF model[J]. Remote Sensing, 2020, 12(1):150.
[17] Xie D, Zhang J, Sun P, et al. Remote sensing data fusion by combining STARFM and downscaling mixed pixel algorithm[J]. National Remote Sensing Bulletin, 2016, 20(1):62-72.
[18] Song H, Liu Q, Wang G, et al. Spatiotemporal satellite image fusion using deep convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3):821-829.
[19] Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218.
[20] Zhu X, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623.
[21] Zhu X, Helmer E H, Gao F, et al. A flexible spatiotemporal method for fusing satellite images with different resolutions[J]. Remote Sensing of Environment, 2016,172:165-177.
[22] 张玉琢, 杨志贵, 于红妍, 等. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6):23-34.
doi: 10.11686/cyxb2021180
[22] Zhang Y Z, Yang Z G, Yu H Y, et al. Estimating grassland above ground biomass based on the STARFM algorithm and remote sensing data:A case study in the Sangke grassland in Xiahe County,Gansu Province[J]. Acta Prataculturae Sinica, 2022, 31(6):23-34.
doi: 10.11686/cyxb2021180
[23] Wang S, Cui D, Wang L, et al. Applying deep-learning enhanced fusion methods for improved NDVI reconstruction and long-term vegetation cover study:A case of the Danjiang River Basin[J]. Ecological Indicators, 2023,155:111088.
[24] 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26(4):153-159.
[24] Li M M, Wu B F, Yan C Z, et al. Estimation of vegetation fraction in the upper basin of Miyun Reservoir by remote sensing[J]. Resources Science, 2004, 26(4):153-159.
[25] 卡米兰·阿布力克, 杨涵. 乌鲁木齐河流域植被覆盖度变化及驱动力研究[J]. 灌溉排水学报, 2024, 43(2):96-105.
[25] Kamilan A, Yang H. Change in vegetation coverage in Urumqi River Basin and the underlying determinants[J]. Journal of Irrigation and Drainage, 2024, 43(2):96-105.
[26] 郭发苗, 彭道黎, 王荫, 等. 基于多尺度2001—2020年河北省植被覆盖度的时空变化及归因分析[J]. 甘肃农业大学学报, 2025, 60(2):179-190,201.
[26] Guo F M, Peng D L, Wang Y, et al. Analysis of spatio-temporal changes and attribution of vegetation cover in Hebei Province from 2001 to 2020 based on multi-scale analysis[J]. Journal of Gansu Agricultural University, 2025, 60(2):179-190,201.
[27] 王超, 侯鹏, 刘晓曼, 等. 中国重要生态系统保护和修复工程区域植被覆盖时空变化研究[J]. 生态学报, 2023, 43(21):8903-8916.
[27] Wang C, Hou P, Liu X M, et al. Spatiotemporal changes in vegetation cover of the national key ecosystem protection and restoration project areas,China[J]. Acta Ecologica Sinica, 2023, 43(21):8903-8916.
[28] Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region,China[J]. International Journal of Geographical Information Science, 2010, 24(1):107-127.
[1] ZOU Haijing, ZOU Bin, WANG Yulong, ZHANG Bo, ZOU Lunwen. Remote sensing identification of industrial solid waste and open pits in mining areas based on the multiscale sample set optimization strategy[J]. Remote Sensing for Natural Resources, 2025, 37(3): 1-8.
[2] GUO Wei, LI Yu, JIN Haibo. Detecting ships from SAR images based on high-dimensional contextual attention and dual receptive field enhancement[J]. Remote Sensing for Natural Resources, 2025, 37(3): 104-112.
[3] DING Xiangyuan, CHEN Erxue, ZHAO Lei, FAN Yaxiong, XU Kunpeng, MA Yunmei. An allometric model method for estimating forest aboveground biomass based on airborne LiDAR and satellite multispectral data[J]. Remote Sensing for Natural Resources, 2025, 37(3): 123-132.
[4] CHEN Min, PENG Shuan, WANG Tao, WU Xuefang, LIU Runpu, CHEN Yushuo, FANG Yanru, YANG Pingjian. A comparative study of water body classification of wetlands based on hyperspectral images from the ZY1-02D satellite: A case study of the Baiyangdian wetland[J]. Remote Sensing for Natural Resources, 2025, 37(3): 133-141.
[5] LI Tianqi, ZHANG Xian, JIN Dingjian, GAO Zihong, HAN Yachao, XU Ning, GAO Han, LI Gongxin. Data quality assessment of the AMS-3000 wide-field three-linear-array stereoscopic aerial survey system[J]. Remote Sensing for Natural Resources, 2025, 37(3): 142-151.
[6] CHEN Yanying, YOU Yangsheng, YANG Qian, WANG Yanbo. Multifactor-based assessment of forest fire risk in Chongqing City, China[J]. Remote Sensing for Natural Resources, 2025, 37(3): 152-161.
[7] CHEN Dong, YANG Jinzhong, WANG Jie, LIU Qiong, ZHAO Yuling, LI Xiangyi. Data acquisition and application of lightweight unmanned aerial vehicles in satellite image-based law enforcement for minerals[J]. Remote Sensing for Natural Resources, 2025, 37(3): 162-169.
[8] ZHAO Lijun, LIU Huan, ZHANG Yun, YANG Junquan, WANG Wei, CHEN Donglei. Monitoring and analysis of new mining-destroyed land and land restoration and management in Shandong Province in 2021[J]. Remote Sensing for Natural Resources, 2025, 37(3): 17-22.
[9] WANG Yuanyuan, ZANG Xiechao, XU Weiwei, YANG Changxia, JIN Yang, REN Jinghua, HE Xinxing. SRP model-based assessment and analysis of ecological vulnerability in the Yangtze River economic belt within Jiangsu Province[J]. Remote Sensing for Natural Resources, 2025, 37(3): 170-182.
[10] TIAN Lijun, CHAO Hui, WANG Chunlei, JIAO Linlin. Exploring the influence of China’s urban population size on carbon dioxide emission intensity based on the Bayesian causal forest model[J]. Remote Sensing for Natural Resources, 2025, 37(3): 183-191.
[11] YANG Chengsheng, WEI Chunrui, WEI Yunjie, LI Zufeng, DING Huilan. Whole-process deformation monitoring of the Baige landslide in Tibet before and after instability based on multisource remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(3): 203-211.
[12] TANG Xia, LIU Yongxin, MA Min, ZHEN Hongchao. Exploring the spatiotemporal variations and influential factors of net ecosystem productivity in the Inner Mongolian grassland ecosystem[J]. Remote Sensing for Natural Resources, 2025, 37(3): 212-220.
[13] ZHOU Shengsen, LI Weile, LU Huiyan, REN Juan, FU Hao, LI Xueqing, WANG Xincheng, LI Yusen, WEI Chunhao. Application of the space-air-ground investigation system in the identification and monitoring of geohazards in highly vegetation-covered mountain areas: A case study of Leshan City, Sichuan Province[J]. Remote Sensing for Natural Resources, 2025, 37(3): 221-232.
[14] LIU Huan, LIU Xiaoxue, ZHANG Yun, YANG Junquan, ZENG Hui. Remote sensing monitoring status and existing problems of new mining-destroyed land and land restoration and management in Henan Province in 2021[J]. Remote Sensing for Natural Resources, 2025, 37(3): 23-31.
[15] CEHN Lanlan, FAN Yongchao, XIAO Haiping, WAN Junhui, CHEN Lei. Predicting surface subsidence in large-scale mining areas based on time-series InSAR and the IRIME-LSTM model[J]. Remote Sensing for Natural Resources, 2025, 37(3): 245-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech