Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (3) : 203-211     DOI: 10.6046/zrzyyg.2024015
|
Whole-process deformation monitoring of the Baige landslide in Tibet before and after instability based on multisource remote sensing images
YANG Chengsheng1(), WEI Chunrui1,2(), WEI Yunjie3, LI Zufeng4, DING Huilan1
1. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China
2. 149th Team,Gansu Coal Geology Bureau, Lanzhou 730020, China
3. China Institute of Geological Environment Monitoring, Beijing 100081, China
4. Northwest Engineering Corporation Limited, PowerChina, Xi’an 710065, China
Download: PDF(6886 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Baige landslide occurred twice in October and November 2018, causing huge economic losses and extensive social impact. Monitoring the activity characteristics of the Baige landslide in various stages based on multisource data is significant for understanding the failure mechanism of this landslide. With Sentinel-1, ALOS-2, and Landsat8 data as data sources, this study derived the deformation characteristics of the Baige landslide before, during, and after two slide events using techniques, such as small baseline subset-interferometric synthetic aperture radar (SBAS-InSAR), SAR offset tracking, and optical offset tracking. The optical offset calculation results show that from November 2014 to March 29, 2018 in the pre-sliding stage, the cumulative displacement of the Baige landslide reached 40 m, with deformation concentrated in the middle of the landslide. The SAR offset results indicate that the cumulative displacement of the landslide reached 6.4 m in May and July 2018 in the pre-sliding stage, with deformation also concentrated in the middle of the landslide. The InSAR-based monitoring results reveal that after the two failures of the Baige landslide in October and November 2018, significant residual deformation remained in the trailing edge and upper left side of the landslide. From November 2018 to November 2021 in the post-sliding stage, the Baige landslide exhibited a deformation rate of -140 mm/y at the high trailing edge of the landslide, and the deformation range on the upper left side continued to expand. All the results of this study reconstructed the whole sliding process of the Baige landslide subjected to large displacements, providing a valuable reference for the monitoring and early warning of landslides.

Keywords Baige landslide      SBAS-InSAR      offset tracking technique      whole process      deformation monitoring     
ZTFLH:  TP79  
Issue Date: 01 July 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chengsheng YANG
Chunrui WEI
Yunjie WEI
Zufeng LI
Huilan DING
Cite this article:   
Chengsheng YANG,Chunrui WEI,Yunjie WEI, et al. Whole-process deformation monitoring of the Baige landslide in Tibet before and after instability based on multisource remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(3): 203-211.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024015     OR     https://www.gtzyyg.com/EN/Y2025/V37/I3/203
Fig.1  Geographical location and sentinel-2 optical image of Baige landslide
SAR数据 Sentinel-1 ALOS-2
轨道方向 升轨 升轨
轨道号 99
入射角/(°) 33.9 36.2
方位角/(°) -10.1 90
成像模式 IW宽幅模式 PALSAR2
极化方式 VV HH
影像数量/景 85 2
影像时间间隔/d 12 56
影像时间范围 2018年11月—
2021年11月
2018年5月28日,
2018年7月23日
Tab.1  Main parameters of the SAR dataset used
序号 数据源 影像 太阳高
度角/(°)
太阳方
位角/(°)
序号 数据源 影像 太阳高
度角/(°)
太阳方
位角/(°)
1 Landsat8 2014-11-29 33.838 3 158.818 0 8 Landsat8 2017-01-21 33.256 1 152.079 2
2 Landsat8 2015-02-01 35.408 1 150.056 2 9 Landsat8 2017-02-06 36.815 7 149.023 3
3 Landsat8 2015-11-16 36.762 2 158.626 6 10 Landsat8 2017-10-20 44.497 5 154.835 2
4 Landsat8 2015-12-02 33.341 8 158.725 2 11 Landsat8 2017-12-23 31.108 4 156.833 1
5 Landsat8 2016-01-03 31.180 0 155.324 6 12 Landsat8 2018-01-24 33.748 1 151.531 9
6 Landsat8 2016-02-04 36.098 4 149.556 6 13 Landsat8 2018-02-25 42.578 0 145.266 3
7 Landsat8 2016-12-04 32.900 5 158.631 4 14 Landsat8 2018-03-29 54.207 2 137.820 0
Tab.2  Main parameters of the optical dataset used
数据 监测时间 处理方法 观测类型 方法描述与适用性 白格滑坡应用阶段
Sentinel-1 2018年11月8日—2021年11月28日 SBAS-InSAR技术 雷达影像 重点区域定性/定量分析;
长时期观测序列,小量级形变监测;
结果为距离向和方位向形变量
第一次滑动和第二次滑动引起的后缘变形区监测; 滑后的长时序监测
ALOS-2 2018年5月28日和2018年7月23日 SAR偏移量
跟踪技术
雷达影像 大量级的形变监测;
较高分辨率雷达影像使结果精度
更高;
结果为距离向和方位向偏移量
滑前的大量级位移
获取
Landsat8 2014年11月29日—2018年3月29日 光学偏移量跟踪技术 光学影像 大量级的形变监测;
可利用数据量较多的光学影像;
结果为东西向和南北向偏移量
滑前的大量级长时间序列位移的获取
Tab.3  Description and summary of various data applications
Fig.2  Spatial and temporal baseline distribution of deformation monitoring SAR images after Baige landslide sliding
Fig.3  Combination of optical images before Baige landslide sliding
Fig.4  Time series cumulative deformation results of optical offset before sliding of Baige landslide from November 29,2014 to different dates
Fig.5  Comprehensive deformation results of SAR offset before Baige landslide sliding from May 28 to July 23, 2018
Fig.6  Time series deformation of optical offset on feature points before sliding
Fig.7  Pre-sliding deformation rate of Baige landslide obtained by ALOS-2 and Landsat8
Fig.8  InSAR deformation results of the first sliding of the Baige landslide
Fig.9  InSAR deformation results of the second sliding of the Baige landslide
Fig.10  Deformation rate after sliding of Baige landslide (from November 8, 2018 to November 28, 2021)
[1] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6):1534-1551.
[1] Xu Q, Zheng G, Li W L, et al. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3,2018[J]. Journal of Engineering Geology, 2018, 26(6):1534-1551.
[2] Colesanti C, Wasowski J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry[J]. Engineering Geology, 2006, 88(3-4):173-199.
[3] Kang Y, Zhao C Y, Zhang Q, et al. Application of InSAR techniques to an analysis of the Guanling landslide[J]. Remote Sen-sing, 2017, 9(10):1046.
[4] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[5] 范景辉, 邱阔天, 夏耶, 等. 三峡库区范家坪滑坡地表形变InSAR监测与综合分析[J]. 地质通报, 2017, 36(9):1665-1673.
[5] Fan J H, Qiu K T, Xia Y, et al. InSAR monitoring and synthetic analysis of the surface deformation of Fanjiaping landslide in the Three Gorges Reservoir area[J]. Geological Bulletin of China, 2017, 36(9):1665-1673.
[6] 朱同同, 史绪国, 周超, 等. 利用2016—2020年Sentinel-1数据监测与分析三峡库区树坪滑坡稳定性[J]. 武汉大学报(信息科学版) 2021, 46(10):1560-1568.
[6] Zhu T T, Shi X G, Zhou C, et al. Stability monitoring and analysis of the Shuping landslide in the Three Gorges Area with Sentinel-1 images from 2016 to 2020[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1560-1568.
[7] 冯文凯, 顿佳伟, 易小宇, 等. 基于SBAS-InSAR技术的金沙江流域沃达村巨型老滑坡形变分析[J]. 工程地质学报, 2020, 28(2):384-393.
[7] Feng W K, Dun J W, Yi X Y, et al. Deformation analysis of Woda Village old landslide in Jinsha River Basin using SBAS-InSAR technology[J]. Journal of Engineering Geology, 2020, 28(2):384-393.
[8] Delacourt C, Allemand P, Casson B, et al. Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images[J]. Geophysical Research Letters, 2004, 31(15):L15619.
[9] Lucieer A, de Jong S M, Turner D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geo-graphy:Earth and Environment, 2014, 38(1):97-116.
[10] Liu X, Zhao C, Zhang Q, et al. Deformation of the Baige landslide,Tibet,China,revealed through the integration of cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 SAR observations[J]. Geophysical Research Letters, 2020, 47(3):e2019GL086142.
[11] 王群, 张蕴灵, 范景辉, 等. 基于PS-InSAR和offset tracking技术的金沙江白格滑坡形变监测[J]. 大地测量与地球动力学, 2020, 40(4):340-345.
[11] Wang Q, Zhang Y L, Fan J H, et al. Deformation monitoring of the Baige landslide in the Jinsha River using PS-InSAR and offset tracking techniques[J]. Journal of Geodesy and Geodynamics, 2020, 40(4):340-345.
[12] 柳林, 宋豪峰, 杜亚男, 等. 联合哨兵2号和Landsat8估计白格滑坡时序偏移量[J]. 武汉大学学报(信息科学版), 2021, 46(10):1461-1470.
[12] Liu L, Song H F, Du Y N, et al. Time-series offset tracking of the Baige landslide based on Sentinel-2 and Landsat8[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1461-1470.
[13] 徐小波, 马超, 单新建, 等. 联合DInSAR与Offset-tracking技术监测高强度采区开采沉陷的方法[J]. 地球信息科学学报, 2020, 22(12):2425-2435.
doi: 10.12082/dqxxkx.2020.190741
[13] Xu X B, Ma C, Shan X J, et al. Monitoring ground subsidence in high-intensity mining area by integrating DInSAR and Offset-tracking technology[J]. Journal of Geo-Information Science, 2020, 22(12):2425-2435.
[14] 孙军, 张锦. 基于SBAS-InSAR和偏移追踪技术的露天煤矿地面形变监测[J]. 煤矿安全, 2022, 53(3):162-169.
[14] Sun J, Zhang J. Ground deformation monitoring of open-pit coal mine based on SBAS-InSAR and offset tracking techniques[J]. Safety in Coal Mines, 2022, 53(3):162-169.
[15] 黄洁慧, 谢谟文, 王立伟. 基于SBAS-InSAR技术的白格滑坡形变监测研究[J]. 人民长江, 2019, 50(12):101-105.
[15] Huang J H, Xie M W, Wang L W. Study on deformation monitoring of Baige landslide based on SBAS-InSAR technology[J]. Yangtze River, 2019, 50(12):101-105.
[16] 莫玉娟, 吴洋, 刘学武. 基于SBAS技术的四川阿坝州小金县地表形变监测[J]. 测绘工程, 2018, 27(11):46-50.
[16] Mo Y J, Wu Y, Liu X W. Monitoring the ground subsidence in Xiaojin County,Sichuan Province based on small baseline subset technique[J]. Engineering of Surveying and Mapping, 2018, 27(11):46-50.
[17] 高文锦. 基于SBAS-InSAR技术的深圳西部地区地表形变研究[D]. 西安: 西安科技大学, 2021.
[17] Gao W J. Research on surface deformation in the west of Shenzhen based on SBAS-InSAR technology[D]. Xi’an: Xi’an University of Science and Technology, 2021.
[18] Ou D, Tan K, Du Q, et al. Decision fusion of D-InSAR and pixel offset tracking for coal mining deformation monitoring[J]. Remote Sensing, 2018, 10(7):1055.
[19] Stumpf A, Malet J P, Allemand P, et al. Surface reconstruction and landslide displacement measurements with Pléiades satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,95:1-12.
[20] 贺礼家, 冯光财, 冯志雄, 等. 哨兵-2号光学影像地表形变监测:以2016年MW7.8新西兰凯库拉地震为例[J]. 测绘学报, 2019, 48(3):339-351.
doi: 10.11947/j.AGCS.2019.20170671
[20] He L J, Feng G C, Feng Z X, et al. Coseismic displacements of 2016 MW7.8 Kaikoura,New Zealand earthquake,using Sentinel-2 optical images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3):339-351.
[21] Li M, Zhang L, Ding C, et al. Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event[J]. Remote Sensing of Environment, 2020,240:111695.
[22] Xiong Z Q, Feng G C, Feng Z X, et al. Pre- and post-failure spatial-temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images[J]. Engineering Geology, 2020,279:105880.
[1] WEI Xiaoqiang, YANG Guolin, LIU Tao, SHAO Ming, MA Zhigang. A study on time lags between groundwater changes and land subsidence based on GRACE and InSAR data[J]. Remote Sensing for Natural Resources, 2025, 37(1): 122-130.
[2] YU Wenxuan, LI Yimin, JI Peikun, FENG Xianjie, XIANG Qianying. Time series surface deformation of the upper reaches of Huangdeng hydropower station in Lanping County based on ascending and descending SAR data[J]. Remote Sensing for Natural Resources, 2024, 36(4): 282-294.
[3] WU Dehong, HAO Lina, YAN Lihua, TANG Fengshun, ZHENG Guang. InSAR-based detection and deformation factor analysis of landslide clusters in the Jinsha River[J]. Remote Sensing for Natural Resources, 2024, 36(3): 259-266.
[4] ZHANG Lijun, HE Sirui, ZHANG Jiandong, PENG Guangxiong, XU Zhibin, XIE Jiancheng, TANG Kai, BU Jiancai. Identification of landslide hazards based on multi-source remote sensing technology:A case study of the Changli area in Hunan Province[J]. Remote Sensing for Natural Resources, 2024, 36(2): 173-187.
[5] CAI Jian’ao, MING Dongping, ZHAO Wenyi, LING Xiao, ZHANG Yu, ZHANG Xingxing. Integrated remote sensing-based hazard identification and disaster-causing mechanisms of landslides in Zayu County[J]. Remote Sensing for Natural Resources, 2024, 36(1): 128-136.
[6] JIN Xintian, WANG Shijie, ZHANG Lanjun, GAO Xingyue. InSAR-based monitoring and analysis of Menyuan earthquake-induced surface deformations[J]. Remote Sensing for Natural Resources, 2024, 36(1): 26-34.
[7] ZHAO Xia, MA Xinyan, YU Qian, WANG Zhaobing. Application of high-resolution InSAR technique in monitoring deformations in the Beijing Daxing International Airport[J]. Remote Sensing for Natural Resources, 2024, 36(1): 49-57.
[8] ZHAO Huawei, ZHOU Lin, TAN Minglun, TANG Minggao, TONG Qinggang, QIN Jiajun, PENG Yuhui. Early identification of potential landslides for the Sichuan-Chongqing power grid based on optical remote sensing and SBAS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(4): 264-272.
[9] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[10] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[11] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[12] MA Xuefei, ZHANG Shuangcheng, HUI Wenhua, XU Qiang. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 146-153.
[13] LUO Xuewei, XIANG Xiqiong, LYU Yadong. PS correction of InSAR time series deformation monitoring for a certain collapse in Longli County[J]. Remote Sensing for Natural Resources, 2022, 34(3): 82-87.
[14] XU Zixing, JI Min, ZHANG Guo, CHEN Zhenwei. Method for dynamic prediction of mining subsidence based on the SBAS-InSAR technology and the logistic model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 20-29.
[15] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech