|
|
|
|
|
|
Whole-process deformation monitoring of the Baige landslide in Tibet before and after instability based on multisource remote sensing images |
YANG Chengsheng1( ), WEI Chunrui1,2( ), WEI Yunjie3, LI Zufeng4, DING Huilan1 |
1. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China 2. 149th Team,Gansu Coal Geology Bureau, Lanzhou 730020, China 3. China Institute of Geological Environment Monitoring, Beijing 100081, China 4. Northwest Engineering Corporation Limited, PowerChina, Xi’an 710065, China |
|
|
Abstract The Baige landslide occurred twice in October and November 2018, causing huge economic losses and extensive social impact. Monitoring the activity characteristics of the Baige landslide in various stages based on multisource data is significant for understanding the failure mechanism of this landslide. With Sentinel-1, ALOS-2, and Landsat8 data as data sources, this study derived the deformation characteristics of the Baige landslide before, during, and after two slide events using techniques, such as small baseline subset-interferometric synthetic aperture radar (SBAS-InSAR), SAR offset tracking, and optical offset tracking. The optical offset calculation results show that from November 2014 to March 29, 2018 in the pre-sliding stage, the cumulative displacement of the Baige landslide reached 40 m, with deformation concentrated in the middle of the landslide. The SAR offset results indicate that the cumulative displacement of the landslide reached 6.4 m in May and July 2018 in the pre-sliding stage, with deformation also concentrated in the middle of the landslide. The InSAR-based monitoring results reveal that after the two failures of the Baige landslide in October and November 2018, significant residual deformation remained in the trailing edge and upper left side of the landslide. From November 2018 to November 2021 in the post-sliding stage, the Baige landslide exhibited a deformation rate of -140 mm/y at the high trailing edge of the landslide, and the deformation range on the upper left side continued to expand. All the results of this study reconstructed the whole sliding process of the Baige landslide subjected to large displacements, providing a valuable reference for the monitoring and early warning of landslides.
|
Keywords
Baige landslide
SBAS-InSAR
offset tracking technique
whole process
deformation monitoring
|
|
Issue Date: 01 July 2025
|
|
|
[1] |
许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 2018, 26(6):1534-1551.
|
[1] |
Xu Q, Zheng G, Li W L, et al. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3,2018[J]. Journal of Engineering Geology, 2018, 26(6):1534-1551.
|
[2] |
Colesanti C, Wasowski J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry[J]. Engineering Geology, 2006, 88(3-4):173-199.
|
[3] |
Kang Y, Zhao C Y, Zhang Q, et al. Application of InSAR techniques to an analysis of the Guanling landslide[J]. Remote Sen-sing, 2017, 9(10):1046.
|
[4] |
Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
|
[5] |
范景辉, 邱阔天, 夏耶, 等. 三峡库区范家坪滑坡地表形变InSAR监测与综合分析[J]. 地质通报, 2017, 36(9):1665-1673.
|
[5] |
Fan J H, Qiu K T, Xia Y, et al. InSAR monitoring and synthetic analysis of the surface deformation of Fanjiaping landslide in the Three Gorges Reservoir area[J]. Geological Bulletin of China, 2017, 36(9):1665-1673.
|
[6] |
朱同同, 史绪国, 周超, 等. 利用2016—2020年Sentinel-1数据监测与分析三峡库区树坪滑坡稳定性[J]. 武汉大学报(信息科学版) 2021, 46(10):1560-1568.
|
[6] |
Zhu T T, Shi X G, Zhou C, et al. Stability monitoring and analysis of the Shuping landslide in the Three Gorges Area with Sentinel-1 images from 2016 to 2020[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1560-1568.
|
[7] |
冯文凯, 顿佳伟, 易小宇, 等. 基于SBAS-InSAR技术的金沙江流域沃达村巨型老滑坡形变分析[J]. 工程地质学报, 2020, 28(2):384-393.
|
[7] |
Feng W K, Dun J W, Yi X Y, et al. Deformation analysis of Woda Village old landslide in Jinsha River Basin using SBAS-InSAR technology[J]. Journal of Engineering Geology, 2020, 28(2):384-393.
|
[8] |
Delacourt C, Allemand P, Casson B, et al. Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images[J]. Geophysical Research Letters, 2004, 31(15):L15619.
|
[9] |
Lucieer A, de Jong S M, Turner D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geo-graphy:Earth and Environment, 2014, 38(1):97-116.
|
[10] |
Liu X, Zhao C, Zhang Q, et al. Deformation of the Baige landslide,Tibet,China,revealed through the integration of cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 SAR observations[J]. Geophysical Research Letters, 2020, 47(3):e2019GL086142.
|
[11] |
王群, 张蕴灵, 范景辉, 等. 基于PS-InSAR和offset tracking技术的金沙江白格滑坡形变监测[J]. 大地测量与地球动力学, 2020, 40(4):340-345.
|
[11] |
Wang Q, Zhang Y L, Fan J H, et al. Deformation monitoring of the Baige landslide in the Jinsha River using PS-InSAR and offset tracking techniques[J]. Journal of Geodesy and Geodynamics, 2020, 40(4):340-345.
|
[12] |
柳林, 宋豪峰, 杜亚男, 等. 联合哨兵2号和Landsat8估计白格滑坡时序偏移量[J]. 武汉大学学报(信息科学版), 2021, 46(10):1461-1470.
|
[12] |
Liu L, Song H F, Du Y N, et al. Time-series offset tracking of the Baige landslide based on Sentinel-2 and Landsat8[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1461-1470.
|
[13] |
徐小波, 马超, 单新建, 等. 联合DInSAR与Offset-tracking技术监测高强度采区开采沉陷的方法[J]. 地球信息科学学报, 2020, 22(12):2425-2435.
doi: 10.12082/dqxxkx.2020.190741
|
[13] |
Xu X B, Ma C, Shan X J, et al. Monitoring ground subsidence in high-intensity mining area by integrating DInSAR and Offset-tracking technology[J]. Journal of Geo-Information Science, 2020, 22(12):2425-2435.
|
[14] |
孙军, 张锦. 基于SBAS-InSAR和偏移追踪技术的露天煤矿地面形变监测[J]. 煤矿安全, 2022, 53(3):162-169.
|
[14] |
Sun J, Zhang J. Ground deformation monitoring of open-pit coal mine based on SBAS-InSAR and offset tracking techniques[J]. Safety in Coal Mines, 2022, 53(3):162-169.
|
[15] |
黄洁慧, 谢谟文, 王立伟. 基于SBAS-InSAR技术的白格滑坡形变监测研究[J]. 人民长江, 2019, 50(12):101-105.
|
[15] |
Huang J H, Xie M W, Wang L W. Study on deformation monitoring of Baige landslide based on SBAS-InSAR technology[J]. Yangtze River, 2019, 50(12):101-105.
|
[16] |
莫玉娟, 吴洋, 刘学武. 基于SBAS技术的四川阿坝州小金县地表形变监测[J]. 测绘工程, 2018, 27(11):46-50.
|
[16] |
Mo Y J, Wu Y, Liu X W. Monitoring the ground subsidence in Xiaojin County,Sichuan Province based on small baseline subset technique[J]. Engineering of Surveying and Mapping, 2018, 27(11):46-50.
|
[17] |
高文锦. 基于SBAS-InSAR技术的深圳西部地区地表形变研究[D]. 西安: 西安科技大学, 2021.
|
[17] |
Gao W J. Research on surface deformation in the west of Shenzhen based on SBAS-InSAR technology[D]. Xi’an: Xi’an University of Science and Technology, 2021.
|
[18] |
Ou D, Tan K, Du Q, et al. Decision fusion of D-InSAR and pixel offset tracking for coal mining deformation monitoring[J]. Remote Sensing, 2018, 10(7):1055.
|
[19] |
Stumpf A, Malet J P, Allemand P, et al. Surface reconstruction and landslide displacement measurements with Pléiades satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,95:1-12.
|
[20] |
贺礼家, 冯光财, 冯志雄, 等. 哨兵-2号光学影像地表形变监测:以2016年MW7.8新西兰凯库拉地震为例[J]. 测绘学报, 2019, 48(3):339-351.
doi: 10.11947/j.AGCS.2019.20170671
|
[20] |
He L J, Feng G C, Feng Z X, et al. Coseismic displacements of 2016 MW7.8 Kaikoura,New Zealand earthquake,using Sentinel-2 optical images[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3):339-351.
|
[21] |
Li M, Zhang L, Ding C, et al. Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event[J]. Remote Sensing of Environment, 2020,240:111695.
|
[22] |
Xiong Z Q, Feng G C, Feng Z X, et al. Pre- and post-failure spatial-temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images[J]. Engineering Geology, 2020,279:105880.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|