Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (2): 63-72    DOI: 10.6046/gtzyyg.2020.02.09
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于结构相似区域搜索的TM影像细小河流提取方法
孙玉梅, 王保云(), 张祝鸿, 韩文科, 孙显辰, 张玲莉
云南师范大学信息学院,昆明 650500
Narrow river extraction method based on structural similarity region search in TM image
Yumei SUN, Baoyun WANG(), Zhuhong ZHANG, Wenke HAN, Xianchen SUN, Lingli ZHANG
School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China
全文: PDF(6330 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对当前TM影像中细小河流提取存在的不连续问题,提出一种基于结构相似区域搜索的细小河流提取方法。首先,利用地物间不同的反射特性,使用水体提取模型对细小河流和无关信息进行区分; 其次,结合TM不同波段上水体灰度值差异,设定不同阈值去除无关噪声; 然后,通过搜索评估不连续河流区域,确定河流待连接断点; 最后,利用河流像元间结构相似度,实现不连续细小河流的启发式搜索连接。研究结果显示,相比传统的乘性Duda算子、线状特征增强算子以及区域生长等方法,基于结构相似区域搜索的细小河流提取方法,有效地解决了细小河流提取不连续的难题,准确地实现了细小河流的完整提取。该方法对基于遥感技术的完整水体信息提取,具有较大的实际应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙玉梅
王保云
张祝鸿
韩文科
孙显辰
张玲莉
关键词 遥感影像细小河流启发式搜索结构相似    
Abstract

The structural similarity region search algorithm is used to realize the automatic extraction of TM image narrow rivers, which is of great value for disaster assessment and soil and water resources management. The discontinuity of narrow river extraction is the main problem which causes the difficulty in accurate obtaining of information about rivers. Many experts have studied various characteristic properties of water bodies to avoid the phenomenon of river information leakage during extraction. However, due to the complex flow of narrow rivers and the vulnerability to environmental disturbances, it is difficult to achieve complete extraction of river information. Combining structural similarity and heuristic search algorithm, this paper proposes a new method for accurately connecting faulted rivers. The specific process of the method is as follows: Firstly, according to the reflection characteristics of the ground objects, the water body extraction model is used to distinguish the narrow rivers from the irrelevant information. Then, the difference between the gray values of the water bodies on different bands is used to set different thresholds for unrelated noise removal. Third, the discontinuous rivers are evaluated by searching. The area is used to determine the breakpoints to be connected to the river. Finally, the heuristic automatic search connection is realized by using the structural similarity between the 5, 4, and 3 bands of river pixels in the TM image. A comparison with several algorithms shows that the proposed method can solve the problem of river extraction fracture of traditional algorithms and realize the precise connection of discontinuous narrow rivers.

Key wordsremote sensing image    narrow rivers    heuristic search    structural similarity
收稿日期: 2019-05-31      出版日期: 2020-06-18
:  TP79  
基金资助:国家自然科学基金项目“基于深度迁移学习的遥感影像中泥石流孕灾沟谷识别——以云南省为例”(61966040);国家级大学生创新训练项目“高山峡谷泥石流沟危险性评价研究(以怒江流域为例)”(201810681009)
通讯作者: 王保云
作者简介: 孙玉梅 (1997-),女,本科生,主要从事图像处理、模式识别。Email: yumeisunup@163.com。
引用本文:   
孙玉梅, 王保云, 张祝鸿, 韩文科, 孙显辰, 张玲莉. 基于结构相似区域搜索的TM影像细小河流提取方法[J]. 国土资源遥感, 2020, 32(2): 63-72.
Yumei SUN, Baoyun WANG, Zhuhong ZHANG, Wenke HAN, Xianchen SUN, Lingli ZHANG. Narrow river extraction method based on structural similarity region search in TM image. Remote Sensing for Land & Resources, 2020, 32(2): 63-72.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.02.09      或      https://www.gtzyyg.com/CN/Y2020/V32/I2/63
Fig.1  基于SSIM区域搜索的细小河流提取流程
Fig.2  TM影像的第2—5波段
Fig.3  启发式搜索示意图
Fig.4  怒江局部区域阴影去除参数分析结果
Fig.5  怒江局部区域小面积噪声去除参数分析结果
Fig.6  怒江局部区域启发式权重分析结果
Fig.7  金沙江局部区域原始图像和主要步骤结果
Fig.8  理塘河和独龙江局部区域原始影像和4种算法提取结果对比
Fig.9  独龙江支流全局原始影像和4种算法提取结果对比
图编号 研究区 应连接
点对/个
正确
连接点
对/个
错误
连接点
对/个
连接正
确率/%
图4—6 怒江局部区域 51 45 6 88.2
金沙江局部区域1 6 6 0 100

图7
金沙江局部区域2 9 9 0 100
金沙江局部区域3 13 13 0 100
金沙江局部区域4 7 6 1 85.7
理塘河局部区域1 73 71 2 97.3

图8
理塘河局部区域2 72 70 2 97.2
独龙江局部区域3 15 14 1 93.3
独龙江局部区域4 49 45 4 91.8
图9 独龙江支流区域 81 75 6 96.0
Tab.1  断点连接情况统计
[1] Zhuang Y, Chen C. A method for water body extraction based on the tasselled cap transformation from remote sensing images [C]//2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications(EORSA),Xi’an, 2018: 1-5.
[2] Li N, Wang R, Liu Y, et al. Robust river boundaries extraction of dammed lakes in mountain areas after Wenchuan Earthquake from high resolution SAR images combining local connectivity and ACM[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,94:91-101.
[3] Rundquist D C, Lawson M P, Queen L P, et al. The relationship between summer-season rainfall events and lake-surface area[J]. JAWRA Journal of the American Water Resources Association, 2007,23(3):493-508.
[4] 姜腾龙, 赵书河, 肖鹏峰, 等. 基于光谱夹角的水体信息提取方法研究[J] 国土资源遥感, 2009,21(2):102-105.doi: 10.6046/gtzyyg.2009.02.21.
Jiang T L, Zhao S H, Xiao P F, et al. Research on water body information extraction method based on spectral angle[J]. Remote Sensing for Land and Resources, 2009,(2):102-105.doi: 10.6046/gtzyyg.2009.02.21.
[5] Mcffeters S K. The use of the normalized difference water index(NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
doi: 10.1080/01431169608948714
[6] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.
Xu H Q. A study on information extracting of water body with the modified normalized difference water index(MNDWI)[J]. Journal of Remote Sensing, 2005,9(5):589-595.
[7] Bo S, Jing Y. One-class classification based river detection in remote sensing image [C]// International Congress on Image & Signal Processing.IEEE, 2018.
[8] Xin Z, Ping W, Chao C, et al. Waterbody information extraction from remote-sensing images after disasters based on spectral information and characteristic knowledge[J]. International Journal of Remote Sensing, 2017,38(5):1404-1422.
doi: 10.1080/01431161.2016.1278284
[9] 张庆春, 佟国峰, 李勇, 等. 基于多特征融合和软投票的遥感图像河流检测[J]. 光学学报, 2018,38(6):320-326.
Zhang Q C, Yan G F, Li Y, et al. Remote sensing image river detection based on multi-feature fusion and soft voting[J]. Acta Optica Sinica, 2018,38(6):320-326.
[10] 朱长明, 骆剑承, 沈占锋, 等. DEM辅助下的河道细小线性水体自适应迭代提取[J]. 测绘学报, 2013,42(2):277-283.
Zhu C M, Luo J C, Shen Z F, et al. Adaptive iterative extraction of small linear water bodies in rivers assisted by DEM[J]. Acta Geoda Sinica, 2013,42(2):277-283.
[11] Geling G, Ionescu D. An edge detection operator for SAR images [C]// Conference on Electrical & Computer Engineering.IEEE, 1993.
[12] 姜浩, 冯敏, 肖桐, 等. 基于线状特征增强的TM遥感影像细小河流提取方法[J]. 测绘学报, 2014,43(7):705-710.
Jiang H, Feng M, Xiao T, et al. A narrow river extraction method based on linear feature enhancement in TM image[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(7):705-710.
[13] 杨树文, 薛重生, 刘涛, 等. 一种利用TM影像自动提取细小水体的方法[J]. 测绘学报, 2010,39(6):611-617.
Yang S W, Xue C S, Liu T, et al. A method for automatically extracting fine waters using TM images[J]. Journal of Surveying and Mapping, 2010,39(6):611-617.
[14] 周艺, 谢光磊, 王世新, 等. 利用伪归一化差异水体指数提取城镇周边细小河流信息[J]. 地球信息科学学报, 2014,16(1):102-107.
Zhou Y, Xie G L, Wang S X, et al. Extracting the information of small rivers around towns by pseudo-normalized difference water body index[J]. Journal of Geo-Information Science, 2014,16(1):102-107.
[15] 李艳华, 丁建丽, 闫人华. 基于国产GF-1遥感影像的山区细小水体提取方法研究[J]. 资源科学, 2015,37(2):408-416.
Li Y H, Ding J L, Yan R H. Research on extraction method of small water body in mountain area based on domestic GF-1 remote sensing image[J]. Resources Science, 2015,37(2):408-416.
[16] Jensen J R. Introductory digital image processing:A remote sensing perspective[M]. NJ:Prentice Hall Logicon Geodynamics,Inc, 1996.
[17] 数据来源于中国科学院计算机网络信息中心地理空间数据云平台.Landsat4-5 TM(DB/OL).[2008-12-13].http://www.gscloud.cn.
The data set is provided by Geospatial Data Cloud site,Computer Network Information Center,Chinese Academy of Sciences.Landsat 4-5 TM(DB/OL).[2008-12-13].http://www.gscloud.cn.
[18] 杜云艳, 周成虎. 水体的遥感信息自动提取方法[J]. 遥感学报, 1998,2(4):264-269.
Du Y Y, Zhou C H. Automatically extracting remote sensing information for water bodies[J]. Journal of Remote Sensing, 1998,2(4):264-269.
[19] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014,140(1):23-35.
[20] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612.
doi: 10.1109/TIP.2003.819861
[1] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[2] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[3] 桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3): 148-155.
[4] 王译著, 黄亮, 陈朋弟, 李文国, 余晓娜. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3): 89-96.
[5] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[6] 胡苏李扬, 李辉, 顾延生, 黄咸雨, 张志麒, 汪迎春. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 国土资源遥感, 2021, 33(1): 221-230.
[7] 刘钊, 赵桐, 廖斐凡, 李帅, 李海洋. 基于语义分割网络的高分遥感影像城市建成区提取方法研究与对比分析[J]. 国土资源遥感, 2021, 33(1): 45-53.
[8] 郑智腾, 范海生, 王洁, 吴艳兰, 王彪, 黄腾杰. 改进型双支网络模型的遥感海水网箱养殖区智能提取方法[J]. 国土资源遥感, 2020, 32(4): 120-129.
[9] 孙珂. 融合超像元与峰值密度特征的遥感影像分类[J]. 国土资源遥感, 2020, 32(4): 41-45.
[10] 卫虹宇, 赵银娣, 董霁红. 基于改进RetinaNet的冷却塔目标检测[J]. 国土资源遥感, 2020, 32(4): 68-73.
[11] 李国庆, 黄菁华, 刘冠, 李洁, 翟博超, 杜盛. 基于Landsat8卫星影像土地利用景观破碎化研究——以陕西省延安麻塔流域为例[J]. 国土资源遥感, 2020, 32(3): 121-128.
[12] 李霄, 刘莹, 姚维岭, 杨金中, 李勇志, 汪洁. 基于ArcPy的违法矿山自动出图方法[J]. 国土资源遥感, 2020, 32(3): 247-251.
[13] 薛白, 付钰莹, 崔成玲, 宋艳茹, 赵世湖. 多重约束条件下的不同遥感影像匹配方法[J]. 国土资源遥感, 2020, 32(3): 49-54.
[14] 吴同, 彭玲, 胡媛. 基于SU-RetinaNet的高分辨率遥感影像非正规垃圾堆检测[J]. 国土资源遥感, 2020, 32(3): 90-97.
[15] 康晋洁, 戚浩平, 杨清华, 陈华. 道路通行障碍物遥感检测与通过性评价[J]. 国土资源遥感, 2020, 32(2): 94-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发