Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 215-223    DOI: 10.6046/zrzyyg.2021156
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于多时相Landsat8影像的海南岛热带天然林类型遥感分类
朱琦1,2(), 郭华东1,2, 张露1,2,3(), 梁栋1,2, 刘栩婷1,2, 万祥星4
1.中国科学院空天信息创新研究院数字地球重点实验室,北京 100094
2.中国科学院大学,北京 100049
3.三亚中科遥感研究所,三亚 572029
4.中国林业科学研究院资源信息研究所,北京 100091
Classification of tropical natural forests in Hainan Island based on multi-temporal Landsat8 remote sensing images
ZHU Qi1,2(), GUO Huadong1,2, ZHANG Lu1,2,3(), LIANG Dong1,2, LIU Xuting1,2, WAN Xiangxing4
1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Sanya Institute of Remote Sensing, Sanya 572029, China
4. Institute of Forest Resources Information Technique, Chinese Academy of Forestry, Beijing 100091, China
全文: PDF(4055 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

热带森林在生物多样性保护以及全球气候变化研究中起着至关重要的作用,其植被类型的复杂性和多样性给遥感热带森林精细分类工作带来挑战。该文依托Google Earth Engine(GEE)平台多时相Landsat8数据,对我国海南省尖峰岭地区热带天然林进行分类探究,在分析多时相数据数量、组合方式对分类精度的影响基础上,针对典型热带雨林、热带季雨林、常绿阔叶林等的热带天然林植被型组类型,提出了一种基于多时相Landsat8影像的分类方法。结果表明: ①随着多时相数据数量的增加,分类精度得到显著提升,海南岛天然林植被型组类型分类精度可以提高到91%; ②当多时相数据达到一定数量后,分类精度趋于稳定; 不同时相数据的组合方式都能提升热带森林分类精度,尤其是在参与分类的数据单独分类精度较低时,其多时相组合对分类精度的提升更加明显,体现了参与分类数据时相选择的宽泛性。所提方法发挥了遥感数据时相变化优势,为海南岛热带天然林类型遥感分类提供有效的参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱琦
郭华东
张露
梁栋
刘栩婷
万祥星
关键词 热带森林分类Google Earth Engine支持向量机时相数据地球大数据    
Abstract

Tropical forests play a vital role in biodiversity conservation and research on global climate change. However, the complexity and diversity of vegetation types pose challenges to the fine remote sensing-based classification of tropical forests. The classification of tropical forests in the Jianfengling area, Hainan Province was analyzed using the multi-temporal Landsat8 data of the Google Earth Engine (GEE) platform. Based on the analysis of the impacts of the size and combination of multi-temporal data on the classification accuracy, this study proposed a classification method based on multi-temporal Landsat8 images for the vegetation type groups of tropical natural forests, such as typical tropical rain forest, tropical monsoon forest, and evergreen broad-leaved forests. The results are as follows. ① The classification accuracy of tropical natural forests was significantly improved as the size of multi-temporal data increased. The classification accuracy of the vegetation type groups of natural forests in Hainan Island reached 91%. ② When the multi-temporal data reached a certain size, the classification accuracy tended to be stable. Different combinations of multi-temporal data can improve the classification accuracy of tropical forests, especially when the classification accuracy of individual data involved was low. This finding reflects the broadness of the selection of temporal data. The proposed method, taking advantage of the temporal changes in remote sensing data, provides an effective reference for the remote sensing-based classification of tropical natural forests in Hainan Island.

Key wordsclassification of tropical forests    Google Earth Engine    support vector machine    temporal data    big earth data
收稿日期: 2021-05-18      出版日期: 2022-06-20
ZTFLH:  TP79  
基金资助:海南省自然科学基金面上项目“基于多源多时相遥感数据的海南天然林分布提取及其典型林型识别研究”(418MS112);国家自然科学基金面上项目“基于时序SAR数据的极地冰盖冻融状态和融化丰度探测方法研究”(41876226)
通讯作者: 张露
作者简介: 朱 琦(1998-),男,博士研究生,研究方向为遥感影像分类、月基对地观测的理论和应用。Email: zhuqi20@mails.ucas.ac.cn
引用本文:   
朱琦, 郭华东, 张露, 梁栋, 刘栩婷, 万祥星. 基于多时相Landsat8影像的海南岛热带天然林类型遥感分类[J]. 自然资源遥感, 2022, 34(2): 215-223.
ZHU Qi, GUO Huadong, ZHANG Lu, LIANG Dong, LIU Xuting, WAN Xiangxing. Classification of tropical natural forests in Hainan Island based on multi-temporal Landsat8 remote sensing images. Remote Sensing for Natural Resources, 2022, 34(2): 215-223.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021156      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/215
Fig.1  尖峰岭研究区位置
Fig.2  基于时相变化的海南岛天然林遥感分类技术路线
Fig.3  Landsat8 OLI数据各波段统计
Fig.4  植被指标信息统计
Fig.5  典型地物2018年度时相光谱特性曲线
Fig.6  多波段Landsat8影像分类结果
Fig.7  2018年月度时序分类精度变化
Fig.8  OA及Kappa系数增加变化
植被指数 NDVI NDTI LSWI EVI SAVI 绝对值
求和
NDVI 1.000 0 -0.731 9 -0.954 4 0.688 1 0.862 5 4.236 9
NDTI -0.731 9 1.000 0 0.696 7 -0.552 5 -0.659 0 3.640 0
LSWI -0.954 4 0.696 7 1.000 0 -0.494 5 -0.904 5 4.050 1
EVI 0.688 1 -0.552 5 -0.494 5 1.000 0 0.478 2 3.213 2
SAVI 0.862 5 -0.659 0 -0.904 5 0.478 2 1.000 0 3.904 3
Tab.1  5种植被指数的相关系数
Fig.9  特征波段筛选前后OA对比
Fig.10  时序分类结果精度
分组 原始平均分类结果 时序分类结果 增幅/% 分组 原始平均分类结果 时序分类结果 增幅/%
OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa
a 0.705 9 0.548 4 0.789 1 0.685 6 11.78 25.02 c 0.658 1 0.471 7 0.801 4 0.695 5 21.77 47.45
b 0.567 4 0.328 2 0.721 5 0.547 7 27.15 66.88 d 0.655 6 0.469 4 0.844 6 0.739 7 28.83 57.58
Tab.2  时序影像分类精度变化
Fig.11  海南岛尖峰岭天然林分类结果
[1] Aragao L, Poulter B, Barlow J, et al. Environmental change and the carbon balance of Amazonian forests[J]. Biological Reviews, 2014, 89(4):913-931.
doi: 10.1111/brv.12088
[2] Finer M, Babbitt B, Novoa S, et al. Future of oil and gas development in the western Amazon[J]. Environmental Research Letters, 2015, 10(2):024003.
doi: 10.1088/1748-9326/10/2/024003
[3] 邓燔, 陈秋波, 刘建波. 海南省热带天然林保护和补偿现状及缺陷分析[J]. 热带农业科学, 2007, 27(2):72-76.
Deng F, Chen Q B, Liu J B. Analysis of the status quo and deficiencies of the protection and compensation of tropical natural forests in Hainan Province[J]. Chinese Journal of Tropical Agriculture, 2007, 27(2):72-76.
[4] Lawrence D, Vandecar K. Effects of tropical deforestation on climate and agriculture[J]. Nature Climate Change, 2015, 5(1):27-36.
doi: 10.1038/nclimate2430
[5] Kalamandeen M, Gloor E, Mitchard E, et al. Pervasive rise of small-scale deforestation in Amazonia[J]. Scientific Reports, 2018, 8(1):1-10.
[6] 陈新云, 李利伟, 刘承芳, 等. 热带原始森林类型分类和蓄积量遥感反演研究[J]. 林业资源管理, 2019, 28(2):39.
Chen X Y, Li L W, Liu C F, et al. Research on classification of tropical primeval forest types and stock volume remote sensing inversion[J]. Forest Resources Management, 2019, 28(2):39.
[7] 田庆久, 闵祥军. 植被指数研究进展[J]. 地球科学进展, 1998, 13(4):327-333.
Tian Q J, Min X J. Research progress in vegetation index[J]. Advances in Earth Science, 1998, 13(4):327-333.
[8] Homer C, Dewitz J, Fry J, et al. Completion of the 2001 national land cover database for the counterminous United States[J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(4):337.
[9] Merchant J W. Remote sensing of the environment:An earth resource perspective[J]. Cartography and Geographic Information Science, 2000, 27(4):311.
doi: 10.1559/152304000783547768
[10] Gómez C, White J C, Wulder M A. Optical remotely sensed time series data for land cover classification:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:55-72.
doi: 10.1016/j.isprsjprs.2016.03.008
[11] Jamali S, Jönsson P, Eklundh L, et al. Detecting changes in vegetation trends using time series segmentation[J]. Remote Sensing of Environment, 2015, 156:182-195.
doi: 10.1016/j.rse.2014.09.010
[12] Senf C, Leitão P J, Pflugmacher D, et al. Mapping land cover in complex Mediterranean landscapes using Landsat:Improved classification accuracies from integrating multi-seasonal and synthetic imagery[J]. Remote Sensing of Environment, 2015, 156:527-536.
doi: 10.1016/j.rse.2014.10.018
[13] Wang J, Zhao Y, Li C, et al. Mapping global land cover in 2001 and 2010 with spatial-temporal consistency at 250 m resolution[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103:38-47.
doi: 10.1016/j.isprsjprs.2014.03.007
[14] Shimabukuro Y E, Beuchle R, Grecchi R C, et al. Assessment of forest degradation in Brazilian Amazon due to selective logging and fires using time series of fraction images derived from Landsat ETM+ images[J]. Remote Sensing Letters, 2014, 5(9):773-782.
doi: 10.1080/2150704X.2014.967880
[15] Pouliot D, Latifovic R, Zabcic N, et al. Development and assessment of a 250 m spatial resolution MODIS annual land cover time series (2000—2011) for the forest region of Canada derived from change-based updating[J]. Remote Sensing of Environment, 2014, 140:731-743.
doi: 10.1016/j.rse.2013.10.004
[16] 陈焕镛. 海南植物志[M]. 北京: 科学出版社, 1964:338.
Chen H Y. Flora of Hainan[M]. Beijing: Science Press, 1964:338.
[17] 李意德. 海南岛尖峰岭热带山地雨林的群落结构特征[J]. 热带亚热带植物学报, 1997, 5(1):18-26.
Li Y D. Community structure characteristics of tropical mountain rainforest in Jianfengling Hainan Island[J]. Journal of Tropical and Subtropical Botany, 1997, 5(1):18-26.
[18] 盛大勇, 庄雪影, 许涵, 等. 尖峰岭热带山地雨林海南特有木本植物群落结构[J]. 植物生态学报, 2012, 36(9):935.
Sheng D Y, Zhuang X Y, Xu H, et al. Community structure of endemic woody plants in the tropical mountain rain forest of Jianfengling in Hainan[J]. Chinese Journal of Plant Ecology, 2012, 36(9):935.
doi: 10.3724/SP.J.1258.2012.00935
[19] Chambers J Q, Tribuzy E S, Toledo L C, et al. Respiration from a tropical forest ecosystem:Partitioning of sources and low carbon use efficiency[J]. Ecological Applications, 2004, 14(s4):72-88.
doi: 10.1890/01-6012
[20] 王伯荪, 彭少麟, 郭泺, 等. 海南岛热带森林景观类型多样性[J]. 生态学报, 2007, 27(5):1690-1695.
Wang B S, Peng S L, Guo L, et al. Diversity of tropical forest landscape types in Hainan Island[J]. Acta Ecologica Sinica, 2007, 27(5):1690-1695.
doi: 10.1016/S1872-2032(07)60040-7
[21] Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS,TM,ETM+,and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5):893-903.
doi: 10.1016/j.rse.2009.01.007
[22] Oreopoulos L, Wilson M J, Várnai T. Implementation on Landsat data of a simple cloud-mask algorithm developed for MODIS land bands[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4):597-601.
doi: 10.1109/LGRS.2010.2095409
[23] 张滔, 唐宏. 基于Google Earth Engine的京津冀2001—2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4):593-599.
Zhang T, Tang H. Beijing-Tianjin-Hebei 2001—2015 based on Google Earth Engine vegetation cover change and urban expansion[J]. Remote Sensing Technology and Application, 2018, 33(4):593-599.
[24] 宋永昌. 对中国植被分类系统的认知和建议[J]. 植物生态学报, 2011, 35(8):882.
doi: 10.3724/SP.J.1258.2011.00882
Song Y C. Cognition and suggestions on China’s vegetation classification system[J]. Chinese Journal of Plant Ecology, 2011, 35(8):882.
doi: 10.3724/SP.J.1258.2011.00882
[25] Zhang L, Wan X, Sun B. Tropical natural forest classification using time-series Sentinel-1 and Landsat-8 images in Hainan Island[C]// IEEE International Geoscience and Remote Sensing Symposium, 2019:6732-6735.
[26] Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17(1):113-126.
pmid: 14690712
[1] 陈昊宇, 项磊, 高贺, 牟金燚, 索晓晶, 滑博伟. 基于分数阶微分的土壤全氮高光谱反演[J]. 自然资源遥感, 2023, 35(3): 170-178.
[2] 李志新, 王梦飞, 贾伟洁, 纪松, 王宇飞. 一种结合阴影信息的建筑物层数识别方法[J]. 自然资源遥感, 2023, 35(3): 97-106.
[3] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[4] 朱琳, 黄玉玲, 杨刚, 孙伟伟, 陈超, 黄可. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2): 50-60.
[5] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[6] 李毅, 程丽娜, 鲁莹莹, 张博淳, 于森, 贾明明. 基于最大值合成和最大类间方差法莱州湾滨海滩涂变化研究[J]. 自然资源遥感, 2022, 34(4): 68-75.
[7] 赵连杰, 吴孟泉, 郑龙啸, 栾绍鹏, 赵贤峰, 薛明月, 刘佳燕, 刘晨曦. 胶东半岛北部海岸线时空变迁及驱动分析[J]. 自然资源遥感, 2022, 34(4): 87-96.
[8] 邓静雯, 田义超, 张强, 陶进, 张亚丽, 黄升光. 机载LiDAR在红树林林分平均高估算中的应用[J]. 自然资源遥感, 2022, 34(3): 129-137.
[9] 王春霞, 张俊, 李屹旭, Phoumilay. 复杂环境下GF-2影像水体指数的构建及验证[J]. 自然资源遥感, 2022, 34(3): 50-58.
[10] 孙肖, 彭军还, 赵锋, 王晓阳, 吕洁, 张登峰. 基于空间统计学的高光谱遥感影像主成分选择方法[J]. 自然资源遥感, 2022, 34(2): 37-46.
[11] 赵晓伟, 黄杨, 汪永强, 储鼎. 基于无人机多光谱数据的玉米苗株估算[J]. 自然资源遥感, 2022, 34(1): 106-114.
[12] 方梦阳, 刘晓煌, 孔凡全, 李明哲, 裴小龙. 一种基于GEE平台制作逐年土地覆盖数据的方法——以黄河流域为例[J]. 自然资源遥感, 2022, 34(1): 135-141.
[13] 郑修诚, 周斌, 雷惠, 黄祺宇, 叶浩林. 基于GEE的杭州湾慈溪段潮滩提取及时空变化分析[J]. 自然资源遥感, 2022, 34(1): 18-26.
[14] 姚金玺, 张志, 张焜. 基于GEE的诺木洪洪积扇植被时空变化特征、成因及趋势分析[J]. 自然资源遥感, 2022, 34(1): 249-256.
[15] 赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发