Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 304-313    DOI: 10.6046/zrzyyg.2023151
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
湖南省植被碳汇动态及其自然驱动因子分析
赵海溶(), 莫宏伟()
湖南科技大学地球科学与空间信息工程学院,湘潭 411201
Dynamic and natural driving factors of vegetation carbon sink in Hunan Province
ZHAO Hairong(), MO Hongwei()
School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
全文: PDF(7036 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

净生态系统生产力(net ecosystem productivity,NEP)是生态系统极为重要的特征量,也是陆地生态系统与大气之间碳交换的物理量。该文基于MODIS NPP和气象数据,利用土壤微生物呼吸模型估算2000—2020年湖南省的植被NEP,并结合趋势拟合、变异系数和标准差椭圆等方法对植被碳汇动态变化特点进行分析,进而利用地理探测器和相关分析等方法定量分析自然因子对植被碳汇的影响。结果表明: 湖南省植被碳汇多年平均值为603.01 gC·m-2·a-1,呈现出南高北低、西高东低,由西南向东北逐步降低的空间分布格局; 2000—2020年,植被碳汇平均趋势系数为2.97 gC·m-2·a-1,整体呈现增加趋势; 变异系数以低波动和较低波动为主,高波动地区主要分布于部分城市周边容易受到自然或人为因素干扰的区域; 植被碳汇变化是多因子共同作用的结果,各因子解释力依次为: 海拔>坡度>气温>降水量>坡向,海拔和坡度对湖南省植被碳汇的时空分布具有较强的解释力,气温和降水对植被碳汇的解释力较弱,植被碳汇与气温、降水量正相关的区域分别占植被总面积的75.13%和73.11%。研究结果可为该区域生态文明建设和实现“双碳”目标提供科学参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵海溶
莫宏伟
关键词 植被碳汇净生态系统生产力(NEP)动态变化驱动因子湖南省    
Abstract

Net ecosystem productivity (NEP) is recognized as an important characteristic quantity of ecosystems and a physical quantity of carbon exchange between terrestrial ecosystems and the atmosphere. Utilizing MODIS NPP and meteorological data, this study estimated the vegetation NEP in Hunan Province from 2000 to 2020 using a soil microbial respiration model. Furthermore, this study analyzed the dynamic characteristics of vegetation carbon sink through trend analysis, variation coefficient, and standard deviation ellipse methods, followed by a quantitative assessment of the impacts of natural factors on vegetation carbon sink using geographical detectors and correlation analysis. The results indicate that the annual multiyear average of vegetation carbon sink in Hunan Province was 603.01 gC·m-2·a-1. The vegetation carbon sink presented a spatial distribution pattern of higher values in the south and west and lower values in the north and east, decreasing gradually from southwest to northeast. From 2000 to 2020, the average trend coefficient of vegetation carbon sink was 2.97 gC·m-2·a-1, trending upward overall. The coefficient of variation was primarily characterized by small fluctuations and fairly small fluctuations, while areas of great fluctuations are mainly scattered around certain cities, which are more susceptible to natural or anthropogenic disturbances. The variations in vegetation carbon sink in Hunan Province result from multiple factors, with the explanatory power of various factors decreased in the order of altitude, slope, temperature, precipitation, and slope. Both altitude and slope exhibited strong explanatory power regarding the spatiotemporal distribution of vegetation carbon sink in Hunan Province, while temperature and precipitation demonstrated weaker explanatory power. Areas where vegetation carbon sink was positively correlated with temperature and precipitation accounted for 75.13% and 73.11% of the total vegetation area, respectively.

Key wordsvegetation carbon sink    net ecosystem productivity (NEP)    dynamic change    driving factors    Hunan Province
收稿日期: 2023-05-23      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:湖南省自然科学基金项目“湘江下游城乡交错带土地生态安全时空动态研究”(2018JJ2115)
通讯作者: 莫宏伟(1968-),男,博士,副教授,研究方向为GIS与城乡国土资源评价。Email: 1100028@hnust.edu.cn
作者简介: 赵海溶(1998-),女,硕士,研究方向为基于GIS的植被碳汇及生态价值评估。Email: zhaohr2028@163.com
引用本文:   
赵海溶, 莫宏伟. 湖南省植被碳汇动态及其自然驱动因子分析[J]. 自然资源遥感, 2024, 36(4): 304-313.
ZHAO Hairong, MO Hongwei. Dynamic and natural driving factors of vegetation carbon sink in Hunan Province. Remote Sensing for Natural Resources, 2024, 36(4): 304-313.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023151      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/304
Fig.1  研究区位置及植被类型
Fig.2  2000—2020年湖南省植被碳汇均值空间分布
Fig.3  植被碳汇均值时序变化趋势
Fig.4  植被碳汇变化趋势及显著性空间分布
Fig.5  植被碳汇变异系数空间分布
Fig.6  植被碳汇重心迁移规律
Fig.7  湖南省自然驱动因子空间分布
驱动因子 降水量 气温 海拔 坡度 坡向
降水量 0.105 9***
气温 0.276 6* 0.130 5***
海拔 0.321 1# 0.289 9# 0.271 6***
坡度 0.265 1# 0.243 6# 0.298 8# 0.190 1***
坡向 0.111 3* 0.137 1* 0.276 8* 0.196 9* 0.002 2***
Tab.1  植被碳汇自然驱动因子探测及交互探测结果
Fig.8  植被碳汇与降水量和气温的相关系数显著性空间分布
Fig.9  植被碳汇空间分布与海拔/坡度的关系
[1] Rogelj J, Schaeffer M, Meinshausen M, et al. Zero emission targets as long-term global goals for climate protection[J]. Environmental Research Letters, 2015, 10(10):105007.
[2] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3):1-15.
Hu A G. China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3):1-15.
[3] Wang Q F, Zheng H, Zhu X J, et al. Primary estimation of Chinese terrestrial carbon sequestration during 2001-2010[J]. Science Bulletin, 2015, 60(6):577-590.
[4] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑:地球科学), 2007, 37(6):804-812.
Fang J Y, Guo Z D, Piao S L, et al. Estimation of carbon sinks of terrestrial vegetation in China from 1981 to 2000[J]. Science in China (Series D (Earth Sciences)), 2007, 37(6):804-812.
[5] Chen J M, Ju W M, Ciais P, et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink[J]. Nature Communications, 2019, 10(1):4259.
doi: 10.1038/s41467-019-12257-8 pmid: 31534135
[6] 潘竟虎, 文岩. 中国西北干旱区植被碳汇估算及其时空格局[J]. 生态学报, 2015, 35(23):7718-7728.
Pan J H, Wen Y. Estimation and spatial-temporal characteristics of carbon sink in the arid region of Northwest China[J]. Acta Ecologica Sinica, 2015, 35(23):7718-7728.
[7] 刘凤, 曾永年. 2000—2015年青海高原植被碳源/汇时空格局及变化[J]. 生态学报, 2021, 41(14):5792-5803.
Liu F, Zeng Y N. Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Plateau from 2000—2015[J]. Acta Ecologica Sinica, 2021, 41(14):5792-5803.
[8] Yang H F, Chen W. Spatio-temporal pattern of urban vegetation carbon sink and driving mechanisms of human activities in Huaibei,China[J]. Environmental Science and Pollution Research International, 2022, 29(21):31957-31971.
[9] 冯艾琳, 武晋雯, 孟莹, 等. 基于MODIS GPP数据产品的辽宁省碳源/汇空间格局分布研究[J]. 遥感技术与应用, 2019, 34(4):857-864.
doi: 10.11873/j.issn.1004-0323.2019.4.0857
Feng A L, Wu J W, Meng Y, et al. Research on spatial distribution of carbon source/sink of Liaoning Province based on MODIS GPP data products[J]. Remote Sensing Technology and Application, 2019, 34(4):857-864.
[10] 张继平, 刘春兰, 郝海广, 等. 基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J]. 生态环境学报, 2015, 24(1):8-13.
doi: 10.16258/j.cnki.1674-5906.2015.01.002
Zhang J P, Liu C L, Hao H G, et al. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the three-river headwaters region based on MODIS GPP/NPP data[J]. Ecology and Environmental Sciences, 2015, 24(1):8-13.
[11] 王川, 刘永昌, 李稚. 塔里木河下游生态输水对植被碳源/汇空间格局的影响[J]. 干旱区地理, 2021, 44(3):729-738.
doi: 10.12118/j.issn.1000–6060.2021.03.15
Wang C, Liu Y C, Li Z. Effects of ecological water conveyance on the spatial pattern of vegetation carbon sources/sinks in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3):729-738.
doi: 10.12118/j.issn.1000–6060.2021.03.15
[12] 贠银娟, 赵军. 基于MODIS-NDVI数据的植被碳汇空间格局研究——以石羊河流域为例[J]. 山地学报, 2018, 36(4):644-653.
Yun Y J, Zhao J. Spatial pattern of vegetation carbon sinks based on MODIS-NDVI data:A case study in Shiyang River Basin,China[J]. Mountain Research, 2018, 36(4):644-653.
[13] 何源, 李星锐, 杨晓帆, 等. 内蒙古锡林郭勒盟典型草原固碳量及固碳潜力估算[J]. 草地学报, 2021, 29(10):2274-2285.
doi: 10.11733/j.issn.1007-0435.2021.10.019
He Y, Li X R, Yang X F, et al. The estimation of actual and potential carbon sequestration in typical steppe in Xilingol Country,Inner Mongolia[J]. Acta Agrestia Sinica, 2021, 29(10):2274-2285.
[14] 陈迎. 碳中和概念再辨析[J]. 中国人口·资源与环境, 2022, 32(4):1-12.
Chen Y. A re-analysis of the concept of carbon neutrality[J]. China Population,Resources and Environment, 2022, 32(4):1-12.
[15] 苏利阳. 碳达峰、碳中和纳入生态文明建设整体布局的战略设计研究[J]. 环境保护, 2021, 49(16):6-9.
Su L Y. Research on the strategy of integrating carbon peak and carbon neutrality into the overall layout of ecological civilization construction[J]. Environmental Protection, 2021, 49(16):6-9.
[16] 陈晓玲, 曾永年. 亚热带山地丘陵区植被NPP时空变化及其与气候因子的关系——以湖南省为例[J]. 地理学报, 2016, 71(1):35-48.
doi: 10.11821/dlxb201601003
Chen X L, Zeng Y N. Spatial and temporal variability of the net primary production(NPP) and its relationship with climate factors in subtropical mountainous and hilly regions of China:A case study in Hunan Province[J]. Acta Geographica Sinica, 2016, 71(1):35-48.
[17] 闫妍, 覃金华, 房磊, 等. 湖南省植被净初级生产力时空动态及其与气候因素的关系[J]. 生态学杂志, 2022, 41(8):1535-1544.
Yan Y, Qin J H, Fang L, et al. Spatiotemporal dynamics of vegetation net primary productivity and its relationships with climatic factors in Hunan Province[J]. Chinese Journal of Ecology, 2022, 41(8):1535-1544.
doi: DOI: 10.13292/j.1000-4890.202208.015
[18] 李家湘, 游健荣, 徐永福, 等. 湖南植被研究:植被类型、组成和分布格局[J]. 中国科学:生命科学, 2021, 51(3):275-288.
Li J X, You J R, Xu Y F, et al. Vegetation research in Hunan Province:Vegetation types,composition,and distribution pattern[J]. Scientia Sinica (Vitae), 2021, 51(3):275-288.
[19] 刘正才, 屈瑶瑶. 基于SPOT-VGT数据的湖南省植被变化及其对气候变化的响应[J]. 北京林业大学学报, 2019, 41(2):80-87.
Liu Z C, Qu Y Y. Vegetation change and its response to climate change based on SPOT-VGT in Hunan Province of Southern China[J]. Journal of Beijing Forestry University, 2019, 41(2):80-87.
[20] 陈雪娇, 周伟, 杨晗. 2001—2017年三江源区典型草地群落碳源/汇模拟及动态变化分析[J]. 干旱区地理, 2020, 43(6):1583-1592.
Chen X J, Zhou W, Yang H. Simulation and dynamic change of carbon source/sink in the typical grassland communities in the Three River Source Area from 2001 to 2017[J]. Arid Land Geography, 2020, 43(6):1583-1592.
doi: 10.12118/j.issn.1000-6060.2020.06.20
[21] Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science China Life Sciences, 2022, 65(5):861-895.
[22] 汤洁, 姜毅, 李昭阳, 等. 基于CASA模型的吉林西部植被净初级生产力及植被碳汇量估测[J]. 干旱区资源与环境, 2013, 27(4):1-7.
Tang J, Jiang Y, Li Z Y, et al. Estimation of vegetation net primary productivity and carbon sink in western Jilin Province based on CASA model[J]. Journal of Arid Land Resources and Environment, 2013, 27(4):1-7.
[23] 裴志永, 周才平, 欧阳华, 等. 青藏高原高寒草原区域碳估测[J]. 地理研究, 2010, 29(1):102-110.
Pei Z Y, Zhou C P, Ouyang H, et al. A carbon budget of alpine steppe area in the Tibetan Plateau[J]. Geographical Research, 2010, 29(1):102-110.
[24] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010
Wang J F, Xu C D. Geodetector:Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
[25] Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region,China[J]. International Journal of Geographical Information Science, 2010, 24(1):107-127.
[26] Sha Z Y, Bai Y F, Li R R, et al. The global carbon sink potential of terrestrial vegetation can be increased substantially by optimal land management[J]. Communications Earth and Environment, 2022, 3:8.
[27] Luo X, Jia B, Lai X. Contributions of climate change,land use change and CO2 to changes in the gross primary productivity of the Tibetan Plateau[J]. Atmospheric and Oceanic Science Letters, 2020, 13(1):8-15.
[28] 刘月, 安德帅, 徐丹丹, 等. 垂直带谱上植被群落对气候变化响应的研究进展[J]. 生态科学, 2022, 41(3):245-251.
Liu Y, An D S, Xu D D, et al. Review on the vegetation response to climate change in vertical zone spectrum[J]. Ecological Science, 2022, 41(3):245-251.
[1] 陈理, 张仙, 李伟, 李瑜, 陈昊旻. 基于分层次多尺度分割的缅甸达贡山镍矿矿区信息提取与动态变化监测[J]. 自然资源遥感, 2024, 36(4): 55-61.
[2] 袁娜, 刘绥华, 胡海涛, 尹霞, 宋善海. 黔东南稳定林地地表反照率时空变化与影响因子分析[J]. 自然资源遥感, 2024, 36(1): 200-209.
[3] 职露, 胡涛, 邹滨, 李浩生, 赵永强. 河南省植被NPP时空分异及其驱动因子[J]. 自然资源遥感, 2023, 35(4): 169-177.
[4] 胡晨霞, 邹滨, 梁玉, 贺晨骋, 林治家. 高空间分辨率生态系统生产总值时空演化分析——以2000—2020年湖南省为例[J]. 自然资源遥感, 2023, 35(3): 179-189.
[5] 王叶兰, 杨鑫, 郝利娜. 2001—2021年川西高原植被NDVI时空变化及影响因素分析[J]. 自然资源遥感, 2023, 35(3): 212-220.
[6] 张祯祺, 蔡惠文, 张平平, 王泽琳, 李婷婷. 基于GEE遥感云平台的三江源植被碳源/汇时空变化研究[J]. 自然资源遥感, 2023, 35(1): 231-242.
[7] 辛荣芳, 李宗仁, 张焜, 张兴, 黄丽, 刘宝山. 青海省湟水流域地质灾害动态变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 254-261.
[8] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[9] 宋奇, 冯春晖, 高琪, 王明玥, 吴家林, 彭杰. 阿拉尔垦区近30年耕地变化及其驱动因子分析[J]. 国土资源遥感, 2021, 33(2): 202-212.
[10] 程筱茜, 洪友堂, 陈劲松, 叶宝莹. 基于ESTARFM的内陆湖泊遥感动态变化监测[J]. 国土资源遥感, 2020, 32(3): 183-190.
[11] 刘昭华, 张春艳. 开封市城市扩张动态监测及驱动因子分析[J]. 国土资源遥感, 2018, 30(4): 193-199.
[12] 蒙永辉, 王集宁, 张丽霞, 罗梅. 1979—2012年莱州湾南岸海水入侵与区域海岸线变动时空耦合分析[J]. 国土资源遥感, 2018, 30(3): 189-195.
[13] 王学成, 杨飞, 高星, 张英慧. 基于阈值比值法的森林冰雪冻害遥感评估——以湖南省为例[J]. 国土资源遥感, 2018, 30(3): 196-203.
[14] 桑潇, 国巧真, 潘应阳, 付盈. 基于TM和OLI数据山西省潞城市土地利用动态变化分析与预测[J]. 国土资源遥感, 2018, 30(2): 125-131.
[15] 魏本赞, 付丽华, 范芳, 张策, 揭文辉, 董双发. 1998—2015年新疆玛纳斯河流域湿地动态变化遥感监测[J]. 国土资源遥感, 2017, 29(s1): 90-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发