Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 62-67    DOI: 10.6046/zrzyyg.2023211
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种基于地面激光雷达点云的树木三维建模方法
万里红1,2(), 曹振宇1,3, 田志林2, 施艳丽1
1.自然资源部四川基础地理信息中心,成都 610041
2.电子科技大学资源与环境学院,成都 611731
3.自然资源部应急测绘技术创新中心,成都 610041
A method for 3D modeling of trees based on terrestrial LiDAR point cloud
WAN Lihong1,2(), CAO Zhenyu1,3, TIAN Zhilin2, SHI Yanli1
1. Sichuan Basic Geographic Information Center, Ministry of Natural Resources, Chengdu 610041,China
2. School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
3. Technology Innovation Center of Emergency Surveying and Mapping, Ministry of Natural Resources, Chengdu 610041,China
全文: PDF(2205 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为更好地获取树木三维几何结构信息,解决高精度、高还原度的树木三维重建问题,提出了一种基于地面激光雷达(terrestrial laser scanning,TLS)点云数据的树木三维建模方法。针对TLS扫描存在树叶间隙的遮挡,充分考虑叶片聚集,结合叶片和枝干的形态特征,采用Delaunay三角网和Alpha-shape算法分别对树木叶片和枝干进行模型拟合重建,有效克服了过去树木三维建模枝干结构不真实、器官建模不精细等问题,较好实现了对单棵树木叶片和细小枝干的三维重建。所提方法可为森林结构参数获取和资源经营管理等提供技术支撑,同时也能为典型树木的部件级实景三维建模提供一定的借鉴和参考作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万里红
曹振宇
田志林
施艳丽
关键词 地面激光雷达点云枝叶分离实景三维树木三维建模    
Abstract

To capture information about the 3D geometric structures of trees more effectively and address the challenge of high-precision, high-fidelity tree reconstruction, this study proposed a method for 3D modeling of trees based on terrestrial LiDAR point cloud. To overcome the occlusion caused by leaf gaps in TLS, this method fully considered the aggregation of leaves, as well as the morphological characteristics of both leaves and branches. By conducting the model fitting and reconstruction of tree leaves and branches using Delaunay triangulation and Alpha-shape algorithm, respectively, the proposed method effectively addressed previous issues such as unrealistic tree structures and imprecise organ modeling, thus achieving the 3D reconstruction of individual tree leaves and small branches efficiently. This study holds great significance for determining forest structural parameters and managing resources, while also offering a valuable reference for component-level real scene 3D modeling of typical trees.

Key wordsterrestrial laser scanning    point cloud    branch and leaf separation    3D real scene    tree 3D reconstruction
收稿日期: 2023-07-14      出版日期: 2025-02-17
ZTFLH:  TP79  
基金资助:四川省科技计划项目“山区重大地质灾害智能识别与动态风险评价关键技术研究”(2023YFS0434);“化工重大危险源事故监测预警及应急救援决策支撑关键技术研究与示范”(2023YFS0415)
作者简介: 万里红(1980-),男,博士研究生,正高级工程师,主要研究方向为时空大数据三维GIS。Email: wlh_666@126.com
引用本文:   
万里红, 曹振宇, 田志林, 施艳丽. 一种基于地面激光雷达点云的树木三维建模方法[J]. 自然资源遥感, 2025, 37(1): 62-67.
WAN Lihong, CAO Zhenyu, TIAN Zhilin, SHI Yanli. A method for 3D modeling of trees based on terrestrial LiDAR point cloud. Remote Sensing for Natural Resources, 2025, 37(1): 62-67.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023211      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/62
Fig.1  研究技术路线
Fig.2  叶簇欧氏距离聚类结果
Fig.3  叶片建模结果
Fig.4  枝干建模结果
Fig.5  树木三维建模结果
[1] 黄洪宇, 陈崇成, 邹杰, 等. 基于地面激光雷达点云数据的单木三维建模综述[J]. 林业科学, 2013, 49(4):123-130.
Huang H Y, Chen C C, Zou J, et al. Tree geometrical 3D modeling from terrestrial laser scanned point clouds:A review[J]. Scientia Silvae Sinicae, 2013, 49(4):123-130.
[2] 张天安, 云挺, 薛联凤, 等. 基于地面激光雷达的活立木枝干三维建模[J]. 南京林业大学学报(自然科学版), 2015, 39(4):163-167.
doi: 10.3969/j.issn.1000-2006.2015.04.028
Zhang T A, Yun T, Xue L F, et al. A new 3D modeling method for branches of standing trees based on point cloud data of terrestrial laser scanning[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(4):163-167.
[3] 卢军, 刘宪钊, 孟维亮, 等. 基于地面激光点云数据的单木三维重建方法[J]. 南京林业大学学报(自然科学版), 2021, 45(6):193-199.
doi: 10.12302/j.issn.1000-2006.202006016
Lu J, Liu X Z, Meng W L, et al. Methodology of individual tree 3D reconstruction based on terrestrial laser scanning point cloud data[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(6):193-199.
[4] 王向玉, 谢东辉, 汪艳, 等. 基于地面激光雷达点云数据的单木三维重建[J]. 遥感技术与应用, 2015, 30(3):455-460.
doi: 10.11873/j.issn.1004-0323.2015.3.0455
Wang X Y, Xie D H, Wang Y, et al. 3D reconstruction of a single tree from terrestrial laser scanner data[J]. Remote Sensing Technology and Application, 2015, 30(3):455-460.
[5] Cheng Z L, Zhang X P, Chen B Q. Simple reconstruction of tree branches from a single range image[J]. Journal of Computer Science and Technology, 2007, 22(6):846-858.
[6] 苏中花. 基于地面激光雷达点云数据的单木三维建模[D]. 成都: 成都理工大学, 2019.
Su Z H. Three-dimensional model of individual tree based on terrestrial LiDAR scanner point cloud data[D]. Chengdu: Chengdu University of Technology, 2019.
[7] 王晓辉. 基于地面激光雷达点云的单树三维几何建模研究[D]. 福州: 福州大学, 2014.
Wang X H. Three dimensional geometrical modeling of individual tree from terrestrial LiDAR scanner point cloud[D]. Fuzhou: Fuzhou University, 2014.
[8] 段芸杉. 基于激光雷达点云数据的单木建模综述[J]. 测绘与空间地理信息, 2022, 45(5):80-82.
Duan Y S. Overview of single tree modeling based on LiDAR point clouds data[J]. Geomatics & Spatial Information Technology, 2022, 45(5):80-82.
[9] 李萍, 冯仲科, 苏珏颖. 定量结构模型的地面激光雷达单木分割应用[J]. 测绘科学, 2022, 47(2):151-156,199.
Li P, Feng Z K, Su J Y. Application of quantitative structure model in TLS single wood segmentation[J]. Science of Surveying and Mapping, 2022, 47(2):151-156,199.
[10] 傅根深, 陈健, 黄庆丰, 等. 基于地基激光雷达的单木森林参数提取分析[J]. 安徽农业科学, 2022, 50(4):128-131.
Fu G S, Chen J, Huang Q F, et al. Extraction and analysis of forest parameters for individual tree based on terrestrial laser scanning[J]. Journal of Anhui Agricultural Sciences, 2022, 50(4):128-131.
[11] 林筱涵, 李爱农, 边金虎, 等. 基于网络图的地基激光雷达复杂树木点云枝叶分离方法[J]. 遥感技术与应用, 2022, 37(1):161-172.
doi: 10.11873/j.issn.1004-0323.2022.1.0161
Lin X H, Li A N, Bian J H, et al. A method for separating leaf and wood components of complex tree point cloud data based on network graph with terrestrial laser scanning[J]. Remote Sensing Technology and Application, 2022, 37(1):161-172.
[12] 廖晓和. 基于车载点云数据的树木提取与分析[J]. 测绘通报, 2020(11):163-166.
doi: 10.13474/j.cnki.11-2246.2020.0378
Liao X H. Tree extraction and analysis based on vehicle point cloud data[J]. Bulletin of Surveying and Mapping, 2020(11):163-166.
doi: 10.13474/j.cnki.11-2246.2020.0378
[13] 李庆, 高祥伟, 费鲜芸, 等. 利用Alpha-shape算法进行树冠三维模型构建[J]. 测绘通报, 2018(12):91-95.
doi: 10.13474/j.cnki.11-2246.2018.0390
Li Q, Gao X W, Fei X Y, et al. Construction of tree crown three-dimensional model using alpha-shape algorithm[J]. Bulletin of Surveying and Mapping, 2018(12):91-95.
doi: 10.13474/j.cnki.11-2246.2018.0390
[14] 付昱兴, 李承明, 朱江, 等. Alpha-shape算法构建枣树点云三维模型[J]. 农业工程学报, 2020, 36(22):214-221.
Fu Y X, Li C M, Zhu J, et al. Three-dimensional model construction method and experiment of jujube tree point cloud using Alpha-shape algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22):214-221.
[15] 张波, 刘红伟, 裴小节. 基于三维激光点云数据建立三维树木模型方法的研究[J]. 安徽农业科学, 2011, 39(33):20904-20905,20930.
Zhang B, Liu H W, Pei X J. Research on the method of building 3D tree model based on 3D laser point cloud data[J]. Journal of Anhui Agricultural Sciences, 2011, 39(33):20904-20905,20930.
[1] 王宗伟, 陆敏燕, 范仪琳. 联合激光点云与立体卫星影像的露滩地区精准测绘[J]. 自然资源遥感, 2024, 36(4): 135-141.
[2] 麻卫峰, 吴小东, 王冲, 闻平, 王金亮, 曹磊, 肖正龙. 地基激光雷达单木树冠体积提取球坐标积分法[J]. 自然资源遥感, 2024, 36(3): 81-87.
[3] 崔子伟, 徐文学, 刘焱雄, 郭亚栋, 孟祥谦, 蒋正坤. 机载激光测深数据获取及处理技术现状[J]. 自然资源遥感, 2023, 35(3): 1-9.
[4] 王丽英, 马旭伟, 有泽, 王世超, CAMARA Mahamadou. 基于多元GMM的机载多光谱LiDAR点云空谱联合分类[J]. 自然资源遥感, 2023, 35(3): 88-96.
[5] 张田, 周忠发, 王玲玉, 赵馨, 张文辉, 张淑, 王宇. 基于无人机点云数据土壤粗糙度测量方法[J]. 自然资源遥感, 2023, 35(1): 115-122.
[6] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[7] 李沛婷, 赵庆展, 田文忠, 马永建. 结合无人机载LiDAR点云法向量的K-means++聚类精简[J]. 国土资源遥感, 2020, 32(2): 103-110.
[8] 孟蕾, 林超. 机载LiDAR技术生成DEM的质量检查与解决方案探讨[J]. 国土资源遥感, 2020, 32(1): 7-12.
[9] 朱军桃, 王雷, 赵传, 郑旭东. 基于区域生长算法的复杂建筑物屋顶点云分割[J]. 国土资源遥感, 2019, 31(4): 20-25.
[10] 李莹, 于海洋, 王燕, 吴建鹏, 杨礼. 基于无人机重建点云与影像的城市植被分类[J]. 国土资源遥感, 2019, 31(1): 149-155.
[11] 易佳思, 胡翔云. 基于Grabcut融合多源数据提取不透水面[J]. 国土资源遥感, 2018, 30(3): 174-180.
[12] 何雪, 邹峥嵘, 张云生, 杜守基, 郑特. 面向对象的倾斜摄影测量点云分类方法[J]. 国土资源遥感, 2018, 30(2): 87-92.
[13] 李云帆, 谭德宝, 刘瑞, 邬建伟. 顾及建筑物屋顶结构的改进RANSAC点云分割算法[J]. 国土资源遥感, 2017, 29(4): 20-25.
[14] 李佳俊, 钟若飞. 轻小型机载LiDAR的航线设计[J]. 国土资源遥感, 2017, 29(2): 97-103.
[15] 王旭东, 段福洲, 屈新原, 李丹, 余攀锋. 面向对象和SVM结合的无人机数据建筑物提取[J]. 国土资源遥感, 2017, 29(1): 97-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发