Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 88-95    DOI: 10.6046/zrzyyg.2023349
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于字典学习光谱解混的绿藻亚像元面积估计
张贻然1(), 潘斌1(), 徐夏2, 朱俊峰3
1.南开大学统计与数据科学学院,天津 300071
2.南开大学计算机学院,天津 300071
3.安图实验仪器(郑州)有限公司,郑州 450016
Subpixel-level area estimation of green algae based on spectral unmixing in dictionary learning
ZHANG Yiran1(), PAN Bin1(), XU Xia2, ZHU Junfeng3
1. College of Statistics and Data Science, Nankai University, Tianjin 300071, China
2. College of Computer Science, Nankai University, Tianjin 300071, China
3. Autobio Labtec Instruments Co., Ltd., Zhengzhou 450016, China
全文: PDF(2449 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

近年来,绿潮成为一种全球范围内的重大海洋生态灾害,准确检测和估计绿藻面积具有重要意义。为了在使用低分辨率的卫星影像监测海洋绿潮时能够准确估计绿藻群落覆盖面积,提出一种基于字典学习的高光谱图像绿藻面积估计方法。首先利用在线稳健字典学习求出与未知地物光谱最为接近的端元谱库,然后通过稀疏编码解得绿藻丰度图并计算绿藻覆盖面积。对2016年6月25日和2020年6月21日GOCI传感器获取的光谱图像进行实验,计算得到的当日绿藻覆盖面积与近似实测结果高度接近,误差最小仅有2.15%,相比于基于指数的硬阈值分割的传统算法具有明显优势。所提方法不依赖于纯像元假设,且既不需要提前估计端元数量,也不需要先验光谱信息,就能够有效降低混合像元的影响、提高面积估计精度,实现亚像素水平的绿藻面积高精度估计。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张贻然
潘斌
徐夏
朱俊峰
关键词 高光谱图像稀疏解混绿藻检测面积估计地物提取    
Abstract

Green tides have emerged as a significant marine ecological disaster worldwide, rendering the accurate detection and area estimation of green algae crucial. To accurately estimate the coverage area of green algae communities in the monitoring of green tides based on low-resolution satellite images, this study proposed a dictionary learning-based method for estimating the area of green algae using hyperspectral images. The proposed method involves deriving the endmember spectrum database that is closest to the unknown surface feature spectra via online robust dictionary learning, obtaining the abundance map of green algae through sparse coding, and calculating the coverage area of green algae. It was verified through the experiment using the spectral images acquired by the geostationary ocean color imager (GOCI) on June 25, 2016, and June 21, 2020. The experimental results reveal that the calculated coverage areas of green algae on the two days were highly close to the approximate measured results, with a minimum error of only 2.15 %, suggesting that the proposed method outperforms traditional index-based hard thresholding algorithms. Independent of the pure pixel hypothesis, the proposed method can effectively address the mixed pixel problem and enhance area estimation accuracy in the absence of a pre-estimated number of endmembers or prior spectral information, thereby achieving high-precision subpixel-level area estimation of green algae.

Key wordshyperspectral image    sparse unmixing    detection of green algae    area estimation    surface feature extraction
收稿日期: 2023-10-25      出版日期: 2025-05-09
ZTFLH:  TP79  
  P407.8  
基金资助:国家自然科学基金项目“基于多目标优化的高光谱遥感图像稀疏解混研究”(62001251);“多层级域适应高光谱遥感图像分类”(62001252);中央高校基本科研业务费专项资金(63243074)
通讯作者: 潘 斌(1990-),男,博士,副教授,主要研究方向为高光谱图像处理。Email : panbin@nankai.edu.cn
作者简介: 张贻然(1999-),女,硕士研究生,主要研究方向为高光谱图像解混。Email : zhangyiran@mail.nankai.edu.cn
引用本文:   
张贻然, 潘斌, 徐夏, 朱俊峰. 基于字典学习光谱解混的绿藻亚像元面积估计[J]. 自然资源遥感, 2025, 37(2): 88-95.
ZHANG Yiran, PAN Bin, XU Xia, ZHU Junfeng. Subpixel-level area estimation of green algae based on spectral unmixing in dictionary learning. Remote Sensing for Natural Resources, 2025, 37(2): 88-95.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023349      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/88
Fig.1  DLSU流程图
Fig.2  研究区域GF-4影像
日期 序号 GOCI成像时间 GF-4成像时间
2016-06-25 1 03:28:46 09:08:08
2 04:28:46
2020-06-21 3 05:28:45 13:23:50
4 06:28:45
Tab.1  2组半同步卫星影像信息
Fig.3  GOCI卫星伪彩色图像
Fig.4  2016年6月25日绿藻群落分布估计
序号 真值 N-FINDR NDVI VB-FAH IGAG gTV SeCoDe DLSU
0 0.1 0 0.1 0 5 0 0.1
1 1 251.2 3 039.2 8 700.8 4 373.5 5 219.5 234.3 8 700.8 6 258.3 917.1 1 287.1 1 278.1 375.4
2 2 739.0 8 181.5 4 147.3 5 090.8 221.8 8 181.5 6 414.8 398.1 1 170.4 1 047.5 428.3
3 157.6 525.0 2 131.8 874.3 1 481.8 16.5 2 131.8 1 876.0 308.0 678.9 2 077.5 123.4
4 1 754.3 1 917.3 879.8 1 323.5 26.5 1 917.3 1 650.8 194.0 684.7 1 256.5 162.5
Tab.2  不同方法的定量对比结果
[1] 王广策, 王辉, 高山, 等. 绿潮生物学机制研究[J]. 海洋与湖沼, 2020, 51(4):789-808.
Wang G C, Wang H, Gao S, et al. Study on the biological mechanism of green tide[J]. Oceanologia et Limnologia Sinica, 2020, 51(4):789-808.
[2] 王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展[J]. 海洋学报, 2018, 40(2):1-13.
Wang Z L, Fu M Z, Xiao J, et al. Progress on the study of the Yellow Sea green tides caused by Ulva prolifera[J]. Haiyang Xuebao, 2018, 40(2):1-13.
[3] Hu L, Zeng K, Hu C, et al. On the remote estimation of Ulva prolifera areal coverage and biomass[J]. Remote Sensing of Environment, 2019, 223:194-207.
[4] Hu C. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.
[5] Xing Q, Hu C. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data:Application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178:113-126.
[6] 刘锦超, 刘建强, 丁静, 等. HY-1C卫星CZI载荷的黄海绿潮提取研究[J]. 海洋学报, 2022, 44(5):1-11.
Liu J C, Liu J L, Ding J, et al. A refined imagery algorithm to extract green tide in the Yellow Sea from HY-1C satellite CZI measurements[J]. Haiyang Xuebao, 2022, 44(5):1-11.
[7] Hu C, Qi L, Hu L, et al. Mapping Ulva prolifera green tides from space:A revisit on algorithm design and data products[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 116:103173.
[8] 赵尊强, 陈鑫, 刘慧芳, 等. 基于改进FCN网络的GOCI绿潮分类研究[J]. 软件导刊, 2020, 19(3):69-73.
Zhao Z Q, Chen X, Liu H F, et al. Greentide classification for GOCI based on improved FCN network[J]. Software Guide, 2020, 19(3):69-73.
[9] 潘斌, 张宁, 史振威, 等. 基于高光谱图像解混的海洋绿藻检测算法[J]. 红外与激光工程, 2018, 47(8):0823001.
Pan B, Zhang N, Shi Z W, et al. Green algae dectection algorithm based on hyperspectral image unmixing[J]. Infrared and Laser Engineering, 2018, 47(8):0823001.
[10] Winter M E. N-FINDR:An algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]// // Spies International Symposium on Optical Science.International Society for Optics and Photonics, 1999.
[11] Xiao Y, Zhang J, Cui T. High-precision extraction of nearshore green tides using satellite remote sensing data of the Yellow Sea,China[J]. International Journal of Remote Sensing, 2017, 38(6):1626-1641.
[12] Pan B, Shi Z, An Z, et al. A novel spectral-unmixing-based green algae area estimation method for GOCI data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(2):437-449.
[13] Tao X, Cui T, Ren P. Cofactor-based efficient endmember extraction for green algae area estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6):849-853.
[14] Alba G, Anabella F, Marcelo S C, et al. Multitemporal spectral analysis for algae detection in an eutrophic lake using sentinel 2 images[C]// 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS).March 22-26, Santiago,Chile.IEEE, 2020:351-356.
[15] Thouvenin P A, Dobigeon N, Tourneret J Y. Online unmixing of multitemporal hyperspectral images accounting for spectral variability[J]. IEEE Transactions on Image Processing, 2016, 25(9):3979-3990.
[16] Iordache M D, Plaza A, Bioucas-Dias J. Recent developments in sparse hyperspectral unmixing[C]// 2010 IEEE International Geoscience and Remote Sensing Symposium.July 25-30, Honolulu,HI,USA.IEEE, 2010:1281-1284.
[17] 宋晓瑞, 赵忠文, 于尧. 一种在线字典学习的高光谱图像盲解混方法[J]. 装备学院学报, 2017, 28(3):21-26.
Song X R, Zhao Z W, Yu Y. Blind unmixing of hyperspectral images based on online dictionary learning[J]. Journal of Equipment Academy, 2017, 28(3):21-26.
[18] Lu C, Shi J, Jia J. Online robust dictionary learning[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition.June 23-28,2013, Portland,OR,USA.IEEE, 2013:415-422.
[19] Bioucas-Dias J M, Figueiredo M A T. Alternating direction algorithms for constrained sparse regression:Application to hyperspectral unmixing[C]// 2010 2nd Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing. June 14-16,2010, Reykjavik,Iceland.IEEE, 2010:1-4.
[20] Zhao C, Wang X, Cham W K. Background subtraction via robust dictionary learning[J]. EURASIP Journal on Image and Video Processing, 2011, 2011(1):972961.
[21] Wagner A, Wright J, Ganesh A, et al. Toward a practical face recognition system:Robust alignment and illumination by sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2):372-386.
[22] Jin X, Wan J, Hu W, et al. Retrieval of green tide concentration and interannual variation analysis in Yellow Sea based on multi-source remote sensing monitoring[C]// Global Oceans 2020:Singapore - U.S.Gulf Coast. October 5-30,2020, Biloxi,MS,USA.IEEE, 2020:1-5.
[23] 童旭东. 中国高分辨率对地观测系统重大专项建设进展[J]. 遥感学报, 2016, 20(5):775-780.
Tong X D. Development of China high-resolution earth observation system[J]. Journal of Remote Sensing, 2016, 20(5):775-780.
[24] 胡昌苗, 白洋, 唐娉. GF-4序列图像的云自动检测[J]. 遥感学报, 2018, 22(1):132-142.
Hu C M, Bai Y, Tang P. Automatic cloud detection for GF-4 series images[J]. Journal of Remote Sensing, 2018, 22(1):132-142.
[25] Qin J, Lee H, Chi J T, et al. Blind hyperspectral unmixing based on graph total variation regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4):3338-3351.
[26] Yao J, Hong D, Xu L, et al. Sparsity-enhanced convolutional decomposition:A novel tensor-based paradigm for blind hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5505014.
[1] 赵鹤婷, 李小军, 徐欣钰, 盖钧飞. 基于ICM的高光谱图像自适应全色锐化算法[J]. 自然资源遥感, 2024, 36(2): 97-104.
[2] 李雷, 孙希延, 纪元法, 付文涛. 融合超像素和多属性形态学轮廓方法的高光谱图像分类[J]. 自然资源遥感, 2023, 35(4): 114-121.
[3] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[4] 张国建, 刘胜震, 孙英君, 俞凯杰, 刘丽娜. 基于弱监督鲁棒性自编码的高光谱异常检测[J]. 自然资源遥感, 2023, 35(2): 167-175.
[5] 孙肖, 徐林林, 王晓阳, 田野, 王伟, 张中跃. 基于优化K-P-Means解混方法的高光谱图像矿物识别[J]. 自然资源遥感, 2022, 34(3): 43-49.
[6] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[7] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[8] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[9] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[10] 曲海成, 郭月, 王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法[J]. 国土资源遥感, 2019, 31(2): 24-31.
[11] 阿茹罕, 何芳, 王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[12] 涂兵, 张晓飞, 张国云, 王锦萍, 周瑶. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1): 22-32.
[13] 刘万军, 李天慧, 曲海成. 基于Fisher准则和TrAdaboost的高光谱相似样本分类算法[J]. 国土资源遥感, 2018, 30(4): 41-48.
[14] 江帆, 张晨洁. 利用NSCT和空间聚类的高光谱图像全局异常检测[J]. 国土资源遥感, 2017, 29(2): 53-59.
[15] 张媛, 张杰林, 赵学胜, 袁博. 基于峰值权重的岩心高光谱矿化蚀变信息提取[J]. 国土资源遥感, 2015, 27(2): 154-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发