Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 74-80    DOI: 10.6046/zrzyyg.2022013
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
面向对象的高分辨率遥感影像地震滑坡分层识别
李晨辉1(), 郝利娜1,2(), 许强2, 王一1, 严丽华1
1.成都理工大学地球科学学院,成都 610059
2.地质灾害防治与地质环境保护国家重点实验室,成都 610059
Object-oriented hierarchical identification of earthquake-induced landslides based on high-resolution remote sensing images
LI Chenhui1(), HAO Lina1,2(), XU Qiang2, WANG Yi1, YAN Lihua1
1. School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, China
全文: PDF(3300 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地震滑坡是不可忽视的地震次生灾害,往往造成极大的人员和财产损失,遥感识别地震滑坡是震后灾害调查和灾情评估的重要手段。文章以GF-1遥感影像为数据源,采用面向对象的分类方法对九寨沟熊猫海区域进行地震滑坡识别。基于多尺度分割和多条件阈值分类构建地震滑坡分层识别规则集,旨在充分利用地物特征,减少光谱相似地物的混分现象,提高滑坡识别精度。结果表明: 共提取熊猫海景点附近滑坡面积约2.18 km2,整体识别精度达到98.11%。该方法可快速获取识别地震滑坡,且识别精度高、识别规则具有适用性,为震后灾害应急调查和灾损快速评估提供参考和依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晨辉
郝利娜
许强
王一
严丽华
关键词 地震滑坡面向对象滑坡分层识别坡度变率    
Abstract

Earthquake-induced landslides are unnegligible secondary earthquake disasters and tend to cause severe casualties and property loss. Remote sensing identification of earthquake-induced landslides is an important means of the investigation and assessment of post-earthquake disasters. With GF-1 remote sensing images as a data source, this study identified the earthquake-induced landslides in the Xiongmaohai area in Jiuzhaigou using the object-oriented classification method. Specifically, the rule set for hierarchical identification of earthquake-induced landslides was constructed based on multi-scale segmentation and multi-conditional threshold classification. The aim is to fully utilize the features of ground objects, reduce the mixing of ground objects with similar spectra, and improve the identification precision of landslides. The identification results show that about 2.18 km2 of landslide area was extracted near the Xiongmaohai scenic spot, with a general identification accuracy of up to 98.11%. Therefore, the method proposed in this study can quickly identify earthquake-induced landslides, with high identification accuracy and applicable identification rules, and, thus, can be used as a reference and basis for the emergency investigation and rapid loss assessment of post-earthquake disasters.

Key wordsearthquake-induced landslide    object-oriented    hierarchical identification of landslides    slope variability
收稿日期: 2022-01-12      出版日期: 2023-03-20
ZTFLH:  TP79  
基金资助:国家重点研发计划课题“重大崩滑灾害危险源识别指标体系研究”(2021YFC3000401);中国博士后科学基金特别资助项目“重大工程背景下黄土高原生态地质环境脆弱性评价”(2020T130074);四川省自然资源厅2021年四川省地质灾害隐患遥感识别监测项目“川南片区地质灾害隐患遥感识别监测”(510201202110324)
通讯作者: 郝利娜(1982-),女,博士,副教授,主要研究方向为遥感地学应用。Email: hao_ln@qq.com
作者简介: 李晨辉(1995-),男,硕士研究生,主要从事地质灾害识别研究。Email: 1281952231@qq.com
引用本文:   
李晨辉, 郝利娜, 许强, 王一, 严丽华. 面向对象的高分辨率遥感影像地震滑坡分层识别[J]. 自然资源遥感, 2023, 35(1): 74-80.
LI Chenhui, HAO Lina, XU Qiang, WANG Yi, YAN Lihua. Object-oriented hierarchical identification of earthquake-induced landslides based on high-resolution remote sensing images. Remote Sensing for Natural Resources, 2023, 35(1): 74-80.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022013      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/74
Fig.1  研究区地理位置
Fig.2  研究方法流程图
分类对象 分割参数
分割尺度 异质性标准
光谱权重 形状标准
光滑度 紧致度
水体 240 0.9 0.5 0.5
道路 70 0.2 0.8 0.2
植被 30 0.9 0.5 0.5
滑坡和裸地 150 0.5 0.5 0.5
Tab.1  地物分割参数表
Fig.3  地震滑坡分层识别规则集
Fig.4  水体识别规则过程
Fig.5  健康植被和受损植被提取结果
Fig.6  地震滑坡对象识别结果
[1] 许强, 黄润秋. 5·12汶川大地震诱发大型崩滑灾害动力特征初探[J]. 工程地质学报, 2008, 16(6):721-729.
Xu Q, Huang R Q. Kinetics charaterustics of large land-slides triggered by May 12th Wenchuan earthquake[J]. Journal of En-gineering Geology, 2008, 16(6):721-729.
[2] 裴向军, 黄润秋. “4·20”芦山地震地质灾害特征分析[J]. 成都理工大学学报(自然科学版), 2013, 40(3):257-263.
Pei X J, Huang R Q. Analysis of characteristics of geological hazards by “4·20” Lushan earthquake in Sichuan,China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(3):257-263.
[3] 崔鹏, 陈晓清, 张建强, 等. “4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J]. 山地学报, 2013, 31(3):257-265.
Cui P, Chen X Q, Zhang J Q, et al. Activities and tendency of mountain hazards induced by the Ms 7.0 Lushan earthquake,April 20,2013[J]. Journal of Mountain Science, 2013, 31(3):257-265.
[4] 董秀军, 许强, 佘金星, 等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版), 2020, 45(3):432-441.
Dong X J, Xu Q, She J X, et al. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3):432-441.
[5] 许冲, 戴福初, 徐锡伟. 汶川地震滑坡灾害研究综述[J]. 地质论评, 2010, 56(6):860-874.
Xu C, Dai F C, Xu X W. Wenchuan earthquake-induced landslides:An overview[J]. Geological Review, 2010, 56(6):860-874.
[6] 黄润秋, 裴向军, 李天斌. 汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J]. 工程地质学报, 2008, 16(6):730-741.
Huang R Q, Pei X J, Li T B. Basic characteristics and formation mechanism of the largest scale landslide scale landslide at Daguangbao occurred during the Wenchuan earthquake[J]. Journal of Engineering Geology, 2008, 16(6):730-741.
[7] 殷跃平. 汶川八级地震滑坡特征分析[J]. 工程地质学报, 2009, 17(1):29-38.
Yin Y P. Features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2009, 17(1):29-38.
[8] 葛大庆. 地质灾害早期识别与监测预警中的综合遥感应用[J]. 城市与减灾, 2018, 123(6):53-60.
Ge D Q. Comprehensive application of remote sensing in early identification,monitoring and early warning in geological disasters[J]. City and Disaster Reduction, 2008, 123(6):53-60.
[9] 吴一全, 曹照清, 陶飞翔. 基于Contourlet变换和ICA的多时相遥感图像变化检测[J]. 地球物理学报, 2016, 59(4):1284-1292.
Wu Y Q, Cao Z Q, Tao F X. Change detection of multi-temporal remote sensing images based on contourlet transform and ICA[J]. Journal of Geophysics, 2016, 59(4):1284-1292.
[10] 郝立贞, 白世彪, 徐红波, 等. 基于CBERS-02卫星数据的地震滑坡识别——以青川县为例[J]. 防灾科技学院学报, 2010, 12(4):46-52.
Hao L Z, Bai S B, Xu H B, et al. Landslide identification after earthquake based on CBERS-02 remote sensing data:The case of Qingchuan[J]. Journal of Institute of Disaster Prevention, 2010, 12(4):46-52.
[11] 吴一全, 陶飞翔, 曹照清. 基于Shearlet变换和KPCA的多时相遥感图像变化检测[J]. 应用基础与工程科学学报, 2014, 22(5):1030-1040.
Wu Y Q, Tao F X, Cao Z Q. Change detection of multi-temporal remote sensing images based on Shearlet transform and KPCA[J]. Journal of Basic Science and Engineering, 2014, 22(5):1030-1040.
[12] 张群, 赵超英. 基于面向对象的高分遥感数据甘肃黑方台黄土滑坡半自动识别[J]. 灾害学, 2017, 32(3):210-215.
Zhang Q, Zhao C Y. Semiautomatic object-oriented loose landslide recognition based on high resolution remote sensing images in Heifangtai,Gansu[J] .Journal of Catastrophology, 2017, 32(3):210-215.
[13] Martha T R, Babu G K, Vinod K K. Damage and geological assessment of the 18 September 2011 Mw 6.9 earthquake in Sikkim,India using very high resolution satellite data[J]. Geoscience Frontiers,2015, 6(6):793-805.
doi: 10.1016/j.gsf.2013.12.011
[14] Martha T R, Kamala P, Jose J, et al. Identification of new landslides from high resolution satellite data covering a large area using object-based change detection methods[J]. Research Article, 2016, 44(4):515-524.
[15] Martha T R, Kerle N, Jetten V, et al. Characterising spectral spatial and morphometric properties of landslides for semiautomatic detection using object - oriented methods[J]. Geomorphology, 2010, 116(1):24-36.
doi: 10.1016/j.geomorph.2009.10.004
[16] 杨文涛, 汪明, 史培军, 等. 基于地形因子分割、分类的面向对象滑坡快速识别方法[J]. 自然灾害学报, 2015, 24(4):1-6.
Yang W T, Wang M, Shi P J, et al. Object-oriented rapid identification of landslides based on terrain factors segmentation and classification[J]. Journal of Natural Disasters, 2015, 24(4):1-6.
[17] 彭令, 徐素宁, 梅军军, 等. 资源三号卫星在汶川震区滑坡快速识别中的应用方法研究[J]. 遥感技术与应用, 2018, 33(1):185-192.
Peng L, Xu S N, Mei J J, et al. Research on Wenchuan earthquake-induced landslides rapid recognition from ZY-3 imagery[J]. Remote Sensing Technology and Application, 2018, 33(1):185-192.
[18] 彭令, 徐素宁, 梅军军, 等. 地震滑坡高分辨率遥感影像识别[J]. 遥感学报, 2017, 21(4):509-518.
Peng L, Xu S N, Mei J J, et al. Earthquake-induced landslide recognition using high-resolution remote sensing images[J]. Journal of Remote Sensing, 2017, 21(4):509-518.
[19] 杨柳, 牟鑫亮, 李晨, 等. 延安市宝塔区地质灾害风险评价[J]. 山地学报, 2020, 38(5):679-690.
Yang L, Mou X L, Li C, et al. Risk assessment of geological hazards in Baota District,Yan’an City,Shaanxi,China[J]. Journal of Mountain Science, 2020, 38(5):679-690.
[20] 吴润霖, 党星海, 周兆叶, 等. 岷县地质灾害易损性模糊综合评价[J]. 地理空间信息, 2021, 19(3):86-89.
Wu R L, Dang X H, Zhou Z Y, et al. Fuzzy comprehensive evaluation of the vulnerability of geological disasters in Min County[J]. Geospatial Information, 2021, 19(3):86-89.
[21] 戴岚欣, 许强, 范宣梅, 等. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J]. 工程地质学报, 2017, 25(4):1151-1164.
Dai L X, Xu Q, Fan X M, et al. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th,2017 and their susceptibility assessment[J]. Journal of Engineering Geology, 2017, 25(4):1151-1164.
[22] 陈文倩, 丁建丽, 王娇, 等. 基于高分一号影像的土地覆被分类方法初探[J]. 干旱区地理, 2016, 39(1):182-189.
Chen W Q, Ding J L, Wang J, et al. Classification method of land cover based on GF-1 image[J]. Arid Land Geography, 2016, 39(1):182-189.
[23] 黄志坚. 面向对象影像分析中的多尺度方法研究[D]. 长沙: 国防科学技术大学, 2014:38-40.
Huang Z J. Research on multi-scale methods in object-based image analysis[D]. Changsha: National University of Defense Technology, 2014:38-40.
[24] 关元秀, 王学恭. eCognition基于对象影像分析教程[M]. 北京: 科学出版社, 2019:40-43.
Guan Y X, Wang X G. Object based image analysis tutorial[M]. Beijing: Science Press, 2019:40-43.
[1] 梁茜亚, 王卷乐, 李朋飞, DAVAADORJ Davaasuren. 基于GF-1影像的蒙古高原干旱半干旱地区自然道路提取——以蒙古国古尔班特斯苏木为例[J]. 自然资源遥感, 2023, 35(2): 122-131.
[2] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[3] 石敏, 李慧颖, 贾明明. 基于GEE云平台与Landsat数据的山口自然保护区红树林时空变化分析[J]. 自然资源遥感, 2023, 35(2): 61-69.
[4] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[5] 张雨, 明冬萍, 赵文祎, 徐录, 赵治, 刘冉. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1): 161-170.
[6] 赵连杰, 吴孟泉, 郑龙啸, 栾绍鹏, 赵贤峰, 薛明月, 刘佳燕, 刘晨曦. 胶东半岛北部海岸线时空变迁及驱动分析[J]. 自然资源遥感, 2022, 34(4): 87-96.
[7] 范莹琳, 娄德波, 张长青, 魏英娟, 贾福东. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4): 153-161.
[8] 凌晓, 刘甲美, 王涛, 朱月琴, 袁玲玲, 陈扬洋. 基于致灾因子对称法分级的信息量模型在地震滑坡危险性评价中的应用[J]. 国土资源遥感, 2021, 33(2): 172-181.
[9] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[10] 苏龙飞, 李振轩, 高飞, 余敏. 遥感影像水体提取研究综述[J]. 国土资源遥感, 2021, 33(1): 9-11.
[11] 张鹏, 林聪, 杜培军, 王欣, 唐鹏飞. 南京市生态红线区高分辨率遥感精准监测方法与应用[J]. 国土资源遥感, 2020, 32(3): 157-164.
[12] 夏既胜, 马梦莹, 符钟壬. 基于GF-2遥感影像的机械性破损面提取方法[J]. 国土资源遥感, 2020, 32(2): 26-32.
[13] 冯林艳, 谭炳香, 王晓慧, 陈新云, 曾伟生, 戚曌. 基于分布函数的对象级森林变化快速检测[J]. 国土资源遥感, 2020, 32(2): 73-80.
[14] 杨丽萍, 马孟, 谢巍, 潘雪萍. 干旱区Landsat8全色与多光谱数据融合算法评价[J]. 国土资源遥感, 2019, 31(4): 11-19.
[15] 黄惠, 郑雄伟, 孙根云, 郝艳玲, 张爱竹, 容俊, 马红章. 基于引力自组织神经网络的震害遥感影像分类[J]. 国土资源遥感, 2019, 31(3): 95-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发