Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 17-24    DOI: 10.6046/zrzyyg.2022305
  海岸带空间资源及生态健康遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取
王建强1(), 邹朝晖2(), 刘荣波3, 刘志松2
1.浙江省水文地质工程地质大队,宁波 315012
2.浙江海洋大学信息工程学院,舟山 316022
3.潍坊市地下水及地质环境保护重点实验室,潍坊 261021
A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model
WANG Jianqiang1(), ZOU Zhaohui2(), LIU Rongbo3, LIU Zhisong2
1. Zhejiang Institute of Hydrogeology and Engineering Geology, Ningbo 315012, China
2. School of Information Engineering, Zhejiang Ocean University, Zhoushan 316022, China
3. Weifang Key Laboratory of Coastal Groundwater and Geological Environmental Protection and Restoration, Weifang 261021, China
全文: PDF(4499 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对近海沿岸复杂地理环境中“同谱异物”效应导致传统方法提取水产养殖塘边界模糊、精度较低的问题,提出了基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取方法。首先,对遥感影像进行预处理,选择合适的波段组合方式以区分养殖塘和其他地物; 其次,通过目视解译进行样本制作; 然后,利用U2-Net深度学习模型训练并提取沿岸养殖塘; 最后,利用局部最佳法确定养殖塘范围。实验结果表明,该方法平均总体精度达到95.50%,平均Kappa系数、召回率和F值分别为0.91,91.45%和91.01%; 在养殖塘个数及面积评价方面,提取出养殖塘区19块,共计9.79 km2,区块数和面积的平均准确度分别为94.06%和93.18%。本研究能够快速、准确地开展海岸带区域养殖塘制图,能够为海洋资源管理和可持续发展提供技术支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王建强
邹朝晖
刘荣波
刘志松
关键词 U2-Net遥感图像水产养殖塘复杂海洋环境    
Abstract

Conventional information extraction methods for aquacultural ponds frequently yield blurred boundaries and low accuracy due to the effect of different objects with the same spectrum in complex geographical environments of offshore and coastal areas. This study proposed a method for extracting information on coastal aquacultural ponds from remote sensing images based on the U2-Net deep learning model. First, an appropriate band combination method was selected to distinguish aquacultural ponds from other surface features through preprocessing of remote sensing images. Samples were then prepared through visual interpretation. Subsequently, the U2-Net model was trained, and information on coastal aquacultural ponds extracted. Finally, the scopes of aquacultural ponds were determined using the local optimum method. The experimental results show that the method proposed in this study yielded the average overall accuracy of 95.50%, with the average Kappa coefficient, recall, and F-value of 0.91, 91.45%, and 91.01%, respectively. Furthermore, 19 ponds were extracted, with a total area of 9.79 km2. The average accuracies of the number and area of aquacultural ponds were 94.06% and 93.18%, respectively. The method proposed in this study allows for quick and accurate mapping of coastal aquacultural ponds, thus providing technical support for marine resource management and sustainable development.

Key wordsU2-Net    remote sensing image    aquaculture pond    complex marine environment
收稿日期: 2022-07-27      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“人类活动影响下的群岛区域海岸线时空演变机制分析”(42171311)
通讯作者: 邹朝晖(1998-),男,硕士研究生,研究方向为深度学习、遥感图像目标识别。Email: zouzh_tab@163.com
作者简介: 王建强(1982-),男,硕士,工程师,研究方向为水文地质调查。Email: joson@bolts-nut.com
引用本文:   
王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022305      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/17
Fig.1  研究区区位示意图
序号 卫星 发射时间 传感器 成像时间 空间分辨率/ m
1 Landsat8 2013.02.11 OLI 2018.07.26 30
2 2019.07.29
3 2020.12.22
4 2021.04.29
5 2022.01.03
6 2022.02.27
7 2022.03.15
8 2022.04.09
Tab.1  本文使用遥感数据情况
Fig.2  U型残差块结构示意图
Fig.3  技术路线
Fig.4  U2-Net网络结构示意图
Fig.5  ROC曲线
Fig.6  PR曲线
Fig.7  混淆矩阵与随机样本点分类结果
时相 生产者
精度/%
用户精
度/%
总体精
度/%
Kappa系数
时相一 100.00 92.00 96.00 0.92
时相二 100.00 88.00 94.00 0.88
时相三 100.00 90.00 95.00 0.90
时相四 100.00 94.00 97.00 0.94
平均值 100.00 91.00 95.50 0.91
Tab.2  养殖塘遥感信息提取准确性评估(样本点)
时相 合成影像 识别结果 误差








Tab.3  养殖塘遥感信息提取结果
时相 P/% R/% F/%
时相一 94.00 95.32 94.66
时相二 81.16 82.67 81.91
时相三 92.33 94.18 93.24
时相四 94.85 93.62 94.23
平均值 90.59 91.45 91.01
Tab.4  养殖塘遥感信息提取准确性评估
时相 水产养殖塘提取结果
区块数 面积
目视解译
结果/个
识别结
果/个
准确
度/%
目视解译
结果/km2
识别结
果/km2
准确
度/%
时相一 19 19 100 10.27 9.75 94.94
时相二 16 13 81.25 4.88 4.46 91.39
时相三 20 19 95.00 9.16 8.50 92.79
时相四 19 19 100 10.46 9.79 93.59
平均值 18.50 17.50 94.06 8.69 8.13 93.18
Tab.5  水产养殖塘提取结果定量评价
[1] 联合国粮食及农业组织. 2020年世界渔业和水产养殖状况:可持续发展在行动[M]. 罗马: 联合国粮食及农业组织, 2020.
Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture 2020. Sustainability in action[M]. Rome: Food and Agriculture Organization of the United Nations, 2020.
[2] 吴荔生, 杨圣云. 试论养殖水域生态系统结构优化与管理[J]. 海洋科学, 2002, 26(7):15-17.
Wu L S, Yang S Y. Study on the structure optimization and management of aquaculture water ecosystem[J]. Marine Science, 2022, 26(7):15-17.
[3] 董金玮, 吴文斌, 黄健熙, 等. 农业土地利用遥感信息提取的研究进展与展望[J]. 地球信息科学学报, 2020, 22(4):772-783.
doi: 10.12082/dqxxkx.2020.200192
Dong J W, Wu W B, Huang J X, et al. State of the art and perspective of agricultural land use remote sensing information extraction[J]. Journal of Geo-Information Science, 2020, 22(4):772-783.
[4] Marco O, Kersten C, Claudia K. Large-scale assessment of coastal aquaculture ponds with Sentinel-1 time series data[J]. Remote Sensing, 2017, 9(440):1-23.
[5] 舒弥, 杜世宏. 国土调查遥感40年进展与挑战[J]. 地球信息科学学报, 2022, 24(4):597-616.
doi: 10.12082/dqxxkx.2022.210512
Shu M, Du S H. Forty years’ progress andchallenges of remote sensing in national land survey[J]. Journal of Geo-Information Science, 2022, 24(4):597-616.
[6] Mcfeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
doi: 10.1080/01431169608948714
[7] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
[8] 葛云峰, 夏丁, 唐辉明, 等. 基于三维激光扫描技术的岩体结构面智能识别与信息提取[J]. 岩石力学与工程学报, 2017, 36(12):3050-3061.
Ge Y F, Xia D, Tang H M, et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12):3050-3061.
[9] Cusano C, Napoletano P, Schettini R. Remote sensing image classification exploiting multiple kernel learning[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11):2331-2335.
doi: 10.1109/LGRS.2015.2476365
[10] 马玥, 姜琦刚, 孟治国, 等. 基于随机森林算法的农耕区土地利用分类研究[J]. 农业机械学报, 2016, 47(1):297-303.
Ma Y, Jiang Q G, Meng Z G, et al. Classification of land use in farming area based on random forest algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1):297-303.
[11] 代晶晶, 吴亚楠, 王登红, 等. 基于面向对象分类的稀土开采区遥感信息提取方法研究[J]. 地球学报, 2018, 39(1):111-118.
Dai J J, Wu Y N, Wang D H, et al. Object-oriented classification for the extraction of remote sensing information in rare earth mining areas[J]. Acta Geoscientica Sinica, 2018, 39(1):111-118.
[12] 代晓丽, 刘世峰, 宫大庆. 基于NLP的文本相似度检测方法[J]. 通信学报, 2021, 42(10):173-181.
doi: 10.11959/j.issn.1000-436x.2021192
Dai X L, Liu S F, Gong D Q. Text similarity detection method based on NLP[J]. Journal on Communications, 2021, 42(10):173-181.
doi: 10.11959/j.issn.1000-436x.2021192
[13] 冯龙锋, 陈英, 周滔辉, 等. CT图像肺及肺病变区域分割方法综述[J]. 中国图象图形学报, 2022, 27(3):722-749.
Feng L F, Chen Y, Zhou T H, et al. Review of human lung and lung lesion regions segmentation methods based on CT images[J]. Journal of Image and Graphics, 2022, 27(3):722-749.
[14] 柯丽娜, 翟宇宁, 范剑超. 深度边缘光谱U-Net海水网箱养殖信息提取[J]. 海洋学报, 2022, 44(2):132-142.
Ke L N, Zhai Y N, Fan J C. Marine cage aquaculture information extraction based on deep edge spectral U-Net[J]. Haiyang Xuebao, 2022, 44(2):132-142.
[15] 郑智腾, 范海生, 王洁, 等. 改进型双支网络模型的遥感海水网箱养殖区智能提取方法[J]. 国土资源遥感, 2020, 32(4):120-129.doi:10.6046/gtzyyg.2020.04.17.
doi: 10.6046/gtzyyg.2020.04.17
Zheng Z T, Fan H S, Wang J, et al. An improved double-branch network method for intelligently extracting marine cage culture area[J]. Remote Sensing for Land and Resources, 2020, 32(4):120-129.doi:10.6046/gtzyyg.2020.04.17.
doi: 10.6046/gtzyyg.2020.04.17
[16] 武易天, 陈甫, 马勇, 等. 基于Landsat8数据的近海养殖区自动提取方法研究[J]. 国土资源遥感, 2018, 30(3):96-105.doi:10.6046/gtzyyg.2018.03.14.
doi: 10.6046/gtzyyg.2018.03.14
Wu Y T, Chen F, Ma Y, et al. Research on automatic extraction method for coastal aquaculture area using Landsat8 data[J]. Remote Sensing for Land and Resources, 2018, 30(3):96-105.doi:10.6046/gtzyyg.2018.03.14.
doi: 10.6046/gtzyyg.2018.03.14
[17] 刘岳明, 杨晓梅, 王志华, 等. 基于深度学习RCF模型的三都澳筏式养殖区提取研究[J]. 海洋学报, 2019, 41(4):119-130.
Liu Y M, Yang X M, Wang Z H, et al. Extracting raft aquaculture areas in Sanduao from high-resolution remote sensing images using RCF[J]. Haiyang Xuebao, 2019, 41(4):119-130.
[18] 苟杰松, 蒋怡, 李宗南, 等. 基于Deeplabv3+模型的成都平原水产养殖水体信息提取[J]. 中国农机化学报, 2021, 42(3):105-112.
doi: 10.13733/j.jcam.issn.2095-5553.2021.03.015
Gou J S, Jiang Y, Li Z N, et al. Aquaculture water body information extraction in the Chengdu plain based on Deeplabv3+ model[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3):105-112.
[19] 文可, 姚焕玫, 黄以, 等. 基于GEE的广西北部湾沿海水产养殖池塘遥感提取[J]. 农业工程学报, 2021, 37(12):280-288.
Wen K, Yao H M, Huang Y, et al. Remote sensing image extraction for coastal aquaculture ponds in the Guangxi Beibu Gulf based on Google Earth Engine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(12):280-288.
[20] 柳崇斌, 徐佳, 王冬梅, 等. 基于GF-3全极化SAR影像多特征优选的水产养殖塘提取[J]. 农业工程学报, 2022, 38(4):206-214.
Liu C B, Xu J, Wang D M, et al. Extracting aquaculture pond using multi-feature optimization of GF-3 PolSAR imagery[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(4):206-214.
[21] 李连伟, 张源榆, 岳增友, 等. 基于全卷积网络模型的高分遥感影像内陆网箱养殖区提取[J]. 山东科学, 2022, 35(2):1-10.
doi: 10.3976/j.issn.1002-4026.2022.02.001
Li L W, Zhang Y Y, Yue Z Y, et al. Extracting inland cage aquacultural areas from high-resolution remote sensing images using full convolutional networks model[J]. Shandong Science, 2022, 35(2):1-10.
[22] Mei H, Ji G P, Wei Z, et al. Camouflaged object segmentation with distraction mining[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:8772-8781.
[23] Han J, Ding J, Xue N, et al. Redet:A rotation-equivariant detector for aerial object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:2786-2795.
[24] Fang Z, Ren J, Sun H, et al. SAFDet:A semi-anchor-free detector for effective detection of oriented objects in aerial images[J]. Remote Sensing, 2020, 12(19):3225.
doi: 10.3390/rs12193225
[25] Zeng Z, Wang D, Tan W, et al. RCSANet:A full convolutional network for extracting inland aquaculture ponds from high-spatial-resolution images[J]. Remote Sensing, 2020(1):92.
[26] 陈超, 陈慧欣, 陈东, 等. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2):141-152.doi:10.6046/gtzyyg.2020248.
doi: 10.6046/gtzyyg.2020248
Chen C, Chen H X, Chen D, et al. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands[J]. Remote Sensing for Land and Resource, 2021, 33(2):141-152.doi:10.6046/gtzyyg.2020248.
doi: 10.6046/gtzyyg.2020248
[27] Wang L, Chen C, Xie F, et al. Estimation of the value of regional ecosystem services of an arvhipelago using satellite remote sensing technology:A case study of Zhoushan Archipelago,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2021(105):102616.
[28] USGS. Landsat8,Landsat Missions[EB/OL]. https://www.usgs.gov/landsat-missions/landsat-8.
[29] Zhang P, Wang D, Lu H, et al. Learning uncertain convolutional features for accurate saliency detection[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017:212-221.
[30] Deng Z, Hu X, Zhu L, et al. R3net:Recurrent residual refinement network for saliency detection[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence.Menlo Park,CA,USA: AAAI Press, 2018:684-690.
[31] Chen S, Tan X, Wang B, et al. Reverse attention for salient object detection[C]// Proceedings of the European Conference on Computer Vision (ECCV), 2018:234-250.
[32] Zhang J, Liang Q W, Guo Q Q, et al. R2Net:Residual refinement network for salient object detection[J]. Image and Vision Computing, 2022(120):104423.
[33] Zeng Y, Zhuge Y, Lu H, et al. Multi-source weak supervision for saliency detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:6074-6083.
[34] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015:234-241.
[35] Qin X, Zhang Z, Huang C, et al. U2-Net:Going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020(106):107404.
[1] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[2] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[3] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[4] 李叶繁, 王琳, 张冬珠. 光谱特征和空间卷积相协同的近岸海域养殖塘遥感信息提取[J]. 自然资源遥感, 2022, 34(4): 42-52.
[5] 马晓剑, 赵法舜, 刘艳宾. 多特征准则融合的遥感图像脉冲噪声的识别处理[J]. 自然资源遥感, 2022, 34(3): 17-26.
[6] 尚晓梅, 李佳田, 吕少云, 杨汝春, 杨超. 用于遥感图像超分辨率重建的残差对偶回归网络[J]. 自然资源遥感, 2022, 34(2): 112-120.
[7] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[8] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[9] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[10] 陈超, 陈慧欣, 陈东, 张自力, 张旭锋, 庄悦, 褚衍丽, 陈建裕, 郑红. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2): 141-152.
[11] 王小兵. 融合提升小波阈值与多方向边缘检测的矿区遥感图像去噪[J]. 国土资源遥感, 2020, 32(4): 46-52.
[12] 刘尚旺, 崔智勇, 李道义. 基于Unet网络多任务学习的遥感图像建筑地物语义分割[J]. 国土资源遥感, 2020, 32(4): 74-83.
[13] 蔡之灵, 翁谦, 叶少珍, 简彩仁. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3): 80-89.
[14] 李宇, 肖春姣, 张洪群, 李湘眷, 陈俊. 深度卷积融合条件随机场的遥感图像语义分割[J]. 国土资源遥感, 2020, 32(3): 15-22.
[15] 叶发茂, 罗威, 苏燕飞, 赵旭青, 肖慧, 闵卫东. 卷积神经网络特征在遥感图像配准中的应用[J]. 国土资源遥感, 2019, 31(2): 32-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发