Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 229-238    DOI: 10.6046/zrzyyg.2023038
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于地表参数变化的延河流域地表温度时空演变分析
李威洋1(), 史海静2(), 聂玮廷1, 杨鑫源1
1.西北农林科技大学资源环境学院,杨凌 712100
2.西北农林科技大学水土保持研究所,杨凌 712100
Analyzing the spatio-temporal evolution of surface temperatures in the Yanhe River basin based on the changes in surface parameters
LI Weiyang1(), SHI Haijing2(), NIE Weiting1, YANG Xinyuan1
1. School of Resources and Environment, Northwest A&F University, Yangling 712100, China
2. Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
全文: PDF(8301 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

地表温度是地表能量平衡与陆面过程的重要参数,与地表参数变化关系密切。该文以黄土高原的延河流域为例,基于2015年、2018年和2020年Landsat OLI/TIRS影像,在利用大气校正法反演地表温度的基础上,提取影像归一化建筑指数(normalized difference built-up index,NDBI)、归一化植被指数(normalized differential vegetation index,NDVI)和归一化水汽指数(normalized difference moisture index,NDMI),分析地表温度与地表参数和土地利用类型的关系,以及地表温度时空变化特征。结果表明,地表温度的反演值与验证值在2015年、2018年和2020年的相关系数分别达0.569,0.675和0.632,均大于0.5,具有一定的准确性和可行性。从地表温度时空变化特征上看,低温区、次中温区、次高温区面积有所减少,而中温区面积增长较大,高温区面积略有增长,地表温度有向中、高温增长的趋势; 从与土地利用类型的关系来看,下垫面覆盖类型的地表温度均呈现为水域<林地<草地<耕地<建设用地; 从与地表参数的定量关系来看,延河流域地表温度变化与地表参数变化存在显著相关性,NDBI与地表温度变化呈正相关性,NDVI和NDMI与地表温度变化呈负相关性; 从与地理环境因素的关系来看,地表温度随着海拔的升高而降低。在不同坡度上地表温度也体现差异性,其中平坡地表温度最高,坡度越陡温度越低。不同坡向地表温度具有显著差异,其中阳坡地表温度明显大于阴坡地表温度。研究结果可为复杂地区的地表水热环境研究提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李威洋
史海静
聂玮廷
杨鑫源
关键词 地表温度遥感温度转移矩阵相关性分析延河流域    
Abstract

Surface temperature, a significant parameter of surface energy balance and land surface processes, is closely associated with the changes in surface parameters. With the Yanhe River basin in the Loess Plateau as a study area, this study derived the surface temperatures through inversion using the atmospheric correction method based on the Landsat OLI/TIRS images of 2015, 2018, and 2020. Moreover, by extracting the normalized difference build-up index (NDBI), normalized differential vegetation index (NDVI), and normalized difference moisture index (NDMI), this study analyzed the relationships of surface temperatures with surface parameters and land use types, as well as the spatio-temporal variations of surface temperatures. The results demonstrate that the correlation coefficients between the inverted and verified values of surface temperatures in 2015, 2018, and 2020 were 0.569, 0.675, and 0.632, respectively, all exceeding 0.5, suggesting certain accuracy and feasibility. Concerning the spatio-temporal variations of surface temperatures, the low-, sub-medium-, and sub-high-temperature zones exhibited decreased areas, whereas medium- and high-temperature zones manifested significantly and slightly increased areas, respectively, suggesting that the surface temperatures tended to increase towards medium and high temperatures. In terms of the relationship with land use types, the surface temperatures of underlying surface cover types increased in the order of water area, forest land, grassland, cultivated land, and construction land. The quantitative relationship reveals significant correlations between changes in surface temperatures and surface parameters of the Yanhe River basin. Specifically, the changes in surface temperatures were positively correlated with the NDBI but negatively correlated with the NDVI and the NDMI. From the perspective of geographical environment factors, surface temperatures decreased with increasing altitude. Different slopes exhibited distinct surface temperatures, which were the highest on flat slopes and lower on steeper slopes. Additionally, different slope aspects manifested significantly different surface temperatures, which were significantly higher on sunny slopes compared to shady slopes. The findings of this study will serve as a reference for exploring surface water thermal environments in complex areas.

Key wordssurface temperature    remote sensing    temperature transfer matrix    correlation analysis    Yanhe River basin
收稿日期: 2023-02-22      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:西部青年学者项目“黄土丘陵区地形微生境分类评价与潜在植物群落分布模拟”(XAB2020YN04);国家自然科学基金项目“黄土丘陵区地形微气候环境与植物功能性状响应”(41501055)
通讯作者: 史海静(1983-),女,博士,副研究员,主要从事数字水土保持与大数据分析的科研工作。Email: shihaijingcn@nwafu.edu.cn
作者简介: 李威洋(2002-),男,本科,主要从事遥感定量反演研究。Email: liweiyang@nwafu.edu.cn
引用本文:   
李威洋, 史海静, 聂玮廷, 杨鑫源. 基于地表参数变化的延河流域地表温度时空演变分析[J]. 自然资源遥感, 2024, 36(2): 229-238.
LI Weiyang, SHI Haijing, NIE Weiting, YANG Xinyuan. Analyzing the spatio-temporal evolution of surface temperatures in the Yanhe River basin based on the changes in surface parameters. Remote Sensing for Natural Resources, 2024, 36(2): 229-238.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023038      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/229
Fig.1  研究区位置
等级 划分依据
高温区 T S > μ + S t d
次高温区 μ + 0.5 S t d < T S μ + S t d
中温区 μ - 0.5 S t d < T S μ + 0.5 S t d
次中温区 μ - S t d < T S μ - 0.5 S t d
低温区 T S < μ - S t d
Tab.1  温度等级划分依据
Fig.2  ArcMap随机生成样本点
日期 最小值 最大值 平均值 标准差
2015-07-01 24.80 45.61 35.14 3.12
2018-05-22 17.05 26.85 20.45 1.52
2020-05-11 18.23 34.27 26.51 3.06
Tab.2  2015—2020年延河流域温度变化
Fig.3  不同年份延河流域温度等级分布
2018年
2015年
低温区 次中温区 中温区 次高温区 高温区 总计
低温区 70 525.80 28 347.93 26 502.39 1 450.08 524.88 127 351.08
次中温区 25 225.74 31 915.98 55 129.95 5 688.27 1 629.54 119 589.48
中温区 24 373.44 38 485.35 144 142.47 50 651.64 27 076.60 284 729.49
次高温区 3 529.08 7 680.42 41 143.50 29 623.86 29 656.80 111 633.66
高温区 1 456.83 4 027.68 30 612.78 29 816.82 58 754.50 124 668.63
总计 125 110.89 110 457.36 297 531.09 117 230.67 117 642.32 767 972.34
Tab.3  2015—2018年温度转移矩阵
2020年
2018年
低温区 次中温区 中温区 次高温区 高温区 总计
低温区 78 520.59 25 666.65 19 162.17 1 434.60 326.88 125 110.89
次中温区 27 076.41 35 266.68 41 553.27 5 112.90 1 448.19 110 457.45
中温区 17 520.75 49 070.25 164 683.71 44 563.14 21 693.24 297 531.09
次高温区 27.63 1 087.47 47 982.33 38 024.91 30 108.33 117 230.67
高温区 16.65 55.98 14 379.84 3 1732.20 71 457.66 117 642.33
总计 123 162.03 111 147.03 287 761.32 120 867.75 125 034.30 767 972.43
Tab.4  2018—2020年温度转移矩阵
土地利用类型 2015年 2018年 2020年
耕地 2.497 67 2.652 77 2.602 38
林地 4.507 34 3.775 78 4.213 32
草地 2.809 73 2.622 07 2.857 82
水域 4.884 62 3.763 21 4.234 66
建设用地 2.215 39 1.542 80 2.026 44
Tab.5  各土地类型在不同年份的温度评分情况
年份 回归分析
2015年 L S T = 22.6651 e 0.993 N D B I R 2 = 0.495 L S T = - 34.4369 N D M I + 54.508 R 2 = 0.491 L S T = - 24.0171 N D V I + 53.895 R 2 = 0.449
2018年 L S T = 16.261 e 0.431 N D B I R 2 = 0.207 L S T = - 8.8673 N D M I + 24.661 R 2 = 0.203 L S T = - 6.4295 N D V I + 25.464 R 2 = 0.195
2020年 L S T = 13.224 e 1.363 N D B I R 2 = 0.489 L S T = - 34.78 N D M I + 43.726 R 2 = 0.473 L S T = - 23.9976 N D V I + 44.660 R 2 = 0.469
Tab.6  NDBI,NDMI,NDVI与LST的定量关系
Fig.4  不同年份NDBI变化
Fig.5  不同年份NDVI变化
Fig.6  不同年份NDMI变化
Fig.7  延河流域地形因子分级分类图
海拔等级 坡度分级 坡向分类
高程/m 平均
温度/℃
坡度 平均
温度/℃
坡向 平均
温度/℃
[495,1 000) 35.42 平坡 35.82 阳坡 35.71
[1 000,1 250) 35.03 缓坡 35.33 半阳坡 35.49
[1 250,1 500) 34.67 斜坡 35.28 平缓坡 35.26
[1 500,1 795) 34.56 陡坡 35.06 半阴坡 35.07
急坡 34.93 阴坡 34.73
Tab.7  2015年LST与地形因素分类统计
海拔等级 坡度分级 坡向分类
高程/m 平均
温度/℃
坡度 平均
温度/℃
坡向 平均
温度/℃
[495,1 000) 21.48 平坡 21.18 阳坡 21.23
[1 000,1 250) 20.55 缓坡 20.51 半阳坡 20.67
[1 250,1 500) 20.05 斜坡 20.43 平缓坡 20.52
[1 500,1 795) 20.01 陡坡 20.38 半阴坡 20.39
急坡 20.34 阴坡 20.16
Tab.8  2018年LST与地形因素分类统计
海拔等级 坡度分级 坡向分类
高程/m 平均
温度/℃
坡度 平均
温度/℃
坡向 平均
温度/℃
[495,1 000) 27.27 平坡 27.38 阳坡 27.22
[1 000,1 250) 26.88 缓坡 26.75 半阳坡 27.09
[1 250,1 500) 26.42 斜坡 26.54 平缓坡 26.72
[1 500,1 795) 26.29 陡坡 26.41 半阴坡 26.35
急坡 26.27 阴坡 25.85
Tab.9  2020年LST与地形因素分类统计
[1] Zhao L, Lee X, Schultz N M. A wedge strategy for mitigation of urban warming in future climate scenarios[J]. Atmospheric Chemistry and Physics, 2017, 17(14):9067-9080.
[2] Chen Y Y, Duan S B, Ren H Z, et al. Algorithm development for land surface temperature retrieval:Application to Chinese Gaofen-5 data[J]. Remote Sensing, 2017, 9(2):161.
[3] Jiang Y, Weng Q. Estimation of hourly and daily evapotranspiration and soil moisture using downscaled LST over various urban surfaces[J]. GIScience and Remote Sensing, 2017, 54(1):95-117.
[4] Anderson M C, Norman J M, Kustas W P, et al. A thermal-based remote sensing technique for routine mapping of land-surface carbon,water and energy fluxes from field to regional scales[J]. Remote Sensing of Environment, 2008, 112(12):4227-4241.
[5] Mia M B, Fujimitsu Y, Nishijima J. Monitoring of thermal activity at the Hatchobaru-Otake geothermal area in Japan using multi-Source satellite images:With comparisons of methods,and solar and seasonal effects[J]. Remote Sensing, 2018, 10(9):1430.
[6] 侯宇初, 张冬有. 基于Landsat8遥感影像的地表温度反演方法对比研究[J]. 中国农学通报, 2019, 35(10):142-147.
doi: 10.11924/j.issn.1000-6850.casb18120100
Hou Y C, Zhang D Y. Comparison study on land surface temperature retrieval algorithms based on Landsat8 remote sensing image[J]. Chinese Agricultural Science Bulletin, 2019, 35(10):142-147.
[7] Jimenez-Munoz J C, Cristobal J, Sobrino J A, et al. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):339-349.
[8] Jin M J, Li J M, Wang C L, et al. A practical split-window algorithm for retrieving land surface temperature from Landsat8 data and a case study of an urban area in China[J]. Remote Sensing, 2015, 7(4):4371-4390.
[9] Ren H Z, Du C, Liu R Y, et al. Atmospheric water vapor retrieval from Landsat8 thermal infrared images[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(5):1723-1738.
[10] Maulana J, Bioresita F. Monitoring of land surface temperature in Surabaya,Indonesia from 2013-2021 using Landsat8 imagery and Google Earth Engine[J]. IOP Conference Series:Earth and Environmental Science, 2023, 1127(1):012027.
[11] Kimothi S, Thapliyal A, Gehlot A, et al. Spatio-temporal fluctuations analysis of land surface temperature (LST) using Remote Sensing data (LANDSAT TM5/8) and multifractal technique to characterize the urban heat Islands (UHIs)[J]. Sustainable Energy Technologies and Assessments, 2023, 55:102956
[12] Galve J M, Sánchez J M, García-Santos V, et al. Assessment of land surface temperature estimates from Landsat8-TIRS in a high-contrast semiarid agroecosystem,algorithms intercomparison[J]. Remote Sensing, 2022, 14(8):1843.
[13] Bradtke K. Landsat8 data as a source of high resolution sea surface temperature maps in the Baltic Sea[J]. Remote Sensing, 2021, 13(22):4619-4619.
[14] Guha S, Govil H. Annual assessment on the relationship between land surface temperature and six remote sensing indices using Landsat data from 1988 to 2019[J]. Geocarto International, 2022, 37(15):4292-4311
[15] Mallick J, Singh C K, Shashtri S, et al. Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 19:348-358.
[16] Rehman A, Qin J, Pervez A, et al. Land-Use/Land Cover changes contribute to land surface temperature:A case study of the upper Indus basin of Pakistan[J]. Sustainability, 2022, 14(2):934.
[17] 钱乐祥, 丁圣彦. 珠江三角洲土地覆盖变化对地表温度的影响[J]. 地理学报, 2005, 60(5):761-770.
Qian L X, Ding S Y. Influence of land cover change on land surface temperature in Zhujiang delta[J]. Acta Geographica Sinica, 2005, 60(5):761-770.
doi: 10.11821/xb200505007
[18] SimÓ G, García-Santos V, JimÉnez M A, et al. Landsat and local land surface temperatures in a heterogeneous terrain compared to MODIS values[J]. Remote Sensing, 2016, 8(10):849.
[19] Peng X, Wu W, Zheng Y, et al. Correlation analysis of land surface temperature and topographic elements in Hangzhou,China[J]. Scientific Reports, 2020, 10:10451.
[20] 赵伟, 李爱农, 张正健, 等. 基于Landsat8热红外遥感数据的山地地表温度地形效应研究[J]. 遥感技术与应用, 2016, 31(1):63-73.
Zhao W, Li A N, Zhang Z J, et al. A study on land surface temperature terrain effect over mountainous area based on Landsat8 Thermal infrared data[J]. Remote Sensing Technology and Application, 2016, 31(1):63-73.
[21] 袁毓婕, 高学睿, 黄可静, 等. 基于RHESSys模型的延河流域水文要素定量模拟[J]. 南水北调与水利科技(中英文), 2023, 21(1):116-126.
Yuan Y J, Gao X R, Huang K J, et al. Quantitative simulation of hydrological elements based on RHESSys model in Yanhe River basin[J]. South-to-North Water Transfers and Water Science & Technology, 2023, 21(1):116-126.
[22] 韩磊, 朱会利, 刘钊. 延安市退耕还林前后土地利用动态变化分析[J]. 西北师范大学学报(自然科学版), 2017, 53(5):101-108.
Han L, Zhu H L, Liu Z. Analysis on land use dynamic changes of pre and post returning farmland to forestland in Yan’an City[J]. Journal of Northwest Normal University(Natural Science), 2017, 53(5):101-108.
[23] 刘强, 穆兴民, 赵广举, 等. 延河流域水沙变化及其对降水和土地利用变化的响应[J]. 干旱区资源与环境, 2021, 35(7):129-135.
Liu Q, Mu X M, Zhao G J, et al. Runoff and sediment changes and their responses to precipitation and land use change in the Yanhe river basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(7):129-135.
[24] 吴志刚, 江滔, 樊艳磊, 等. 基于Landsat8数据的地表温度反演及分析研究——以武汉市为例[J]. 工程地球物理学报, 2016, 13(1):135-142.
Wu Z G, Jiang T, Fan Y L, et al. Land surface temperature retrieval and result analysis based on Landsat8 data in Wuhan City[J]. Chinese Journal of Engineering Geophysics, 2016, 13(1):135-142.
[25] Zhong X, Zhao L H, Wang J, et al. A retrieval method for land surface temperatures based on UAV broadband thermal infrared images via the three-dimensional look-up table[J]. Building and Environment, 2022, 226:109793.
[26] Qin Z, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 22(18):3719-3746.
[27] Kachar H, Vafsian A R, Modiri M, et al. Evaluation of spatial and temporal distribution changes of LST using Landsat images (case study:Tehran)[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2015, XL-1/W5:351-356.
[28] 刘思煜, 吴焱, 许娟, 等. 延安市地表热环境与下垫面指数的关系研究[J]. 西北林学院学报, 2022, 37(6):207-214+265.
Liu S Y, Wu Y, Xu J, et al. Relationship between surface thermal environment and underlying surface index in Yan’an City[J]. Journal of Northwest Forestry University, 2022, 37(6):207-214,265.
[29] 赵禾苗, 阿里木江·卡斯木. 基于地理探测器的喀什市地表热场空间分异及影响因素分析[J]. 生态与农村环境学报, 2022, 38(2):147-156.
Zhao H M, Alimujiang K. Analysis of spatial differentiation and influencing factors of surface thermal field in Kashgar City based on geographic detector[J]. Journal of Ecology and Rural Environment, 2022, 38(2):147-156.
[30] Kuang W, Liu Y, Dou Y, et al. What are hot and what are not in an urban landscape:Quantifying and explaining the land surface temperature pattern in Beijing,China[J]. Landscape Ecology, 2015, 30(2):357-373.
[31] 查勇, 倪绍祥, 杨山. 一种利用TM图像自动提取城镇用地信息的有效方法[J]. 遥感学报, 2003, 7(1):37-40,82.
Zha Y, Ni S X, Yang S. An effective approach to automatically extract urban land-use from TM Imagery[J]. National Remote Sensing Bulletin, 2003, 7(1):37-40,82.
[32] 郭宇, 王宏伟, 张喆, 等. 南京市热环境与地表覆被的时空尺度效应及驱动机制研究[J]. 生态环境学报, 2020, 29(7):1403-1411.
doi: 10.16258/j.cnki.1674-5906.2020.07.015
Guo Y, Wang H W, Zhang Z, et al. Spatio-temporal scale effect and driving mechanism of thermal environment and land surface cover in Nanjing[J]. Ecology and Environmental Sciences, 2020, 29(7):1403-1411.
[33] 钱乐祥, 崔海山. 归一化水汽指数与地表温度的关系[J]. 地理研究, 2008, 27(6):1358-1366,1483.
Qian L X, Cui H S. Relationship between normalized difference moisture index and land surface temperature[J]. Geographical Research, 2008, 27(6):1358-1366,1483.
doi: 10.11821/yj2008060015
[1] 林聃, 李秋岑, 陈志奎, 钟芳明, 李丽方. 多标签遥感图像分类研究现状与展望[J]. 自然资源遥感, 2024, 36(2): 10-20.
[2] 和海霞, 李博. 青海大通“8·18”山洪灾害特征及风险分析[J]. 自然资源遥感, 2024, 36(2): 135-141.
[3] 刘稼丰, 张文凯, 杜晓敏, 冀欣阳, 杨金中, 范景辉, 孙禧勇, 佟晶. 1976—2020年黄河入海口滩区水体演变过程及淹没风险识别[J]. 自然资源遥感, 2024, 36(2): 151-159.
[4] 宋奇, 高小红, 宋玉婷, 黎巧丽, 陈真, 李润祥, 张昊, 才桑洁. 基于无人机高光谱影像的农田土壤有机碳含量估算——以湟水流域农田为例[J]. 自然资源遥感, 2024, 36(2): 160-172.
[5] 高昇, 陈富龙, 时丕龙, 周伟, 朱猛, 骆艳松, 杨青霞, 王琴. 九寨沟生物圈保护区大场景植被健康遥感精细监测与诠析——以长海为例[J]. 自然资源遥感, 2024, 36(2): 188-197.
[6] 邢宇, 王静雅, 杨金中, 陈栋, 杜晓敏, 郭靖凯, 宋丽聪. 全国废弃露天矿山采矿用地分布状况与存在问题[J]. 自然资源遥感, 2024, 36(2): 21-26.
[7] 马晓雪, 焦润成, 曹颖, 南赟, 王晟宇, 郭学飞, 赵丹凝, 闫驰, 倪璇. 重大工程建设中地质灾害综合遥感监测技术方法应用——以北京2022冬奥会延庆赛区为例[J]. 自然资源遥感, 2024, 36(2): 248-256.
[8] 陈艳, 袁晶, 唐春花, 孙超, 唐枭, 汪明有. 武功山隆起区地热资源预测遥感方法研究[J]. 自然资源遥感, 2024, 36(2): 27-38.
[9] 宋爽爽, 肖开斐, 刘昭华, 曾昭亮. 一种基于YOLOv5的高分辨率遥感影像目标检测方法[J]. 自然资源遥感, 2024, 36(2): 50-59.
[10] 赵彬如, 牛思文, 王力彦, 杨晓彤, 焦红波, 王子珂. 面向海岛海岸带区域的高分遥感影像智能化色彩增强方法[J]. 自然资源遥感, 2024, 36(2): 70-79.
[11] 赵鹤婷, 李小军, 徐欣钰, 盖钧飞. 基于ICM的高光谱图像自适应全色锐化算法[J]. 自然资源遥感, 2024, 36(2): 97-104.
[12] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[13] 宋英旭, 邹昱嘉, 叶润青, 贺志霞, 王宁涛. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024, 36(1): 154-161.
[14] 姚灵筠, 王力, 牛铮, 尹子琪, 付雨文. 2000—2018年长株潭城市群城市扩张及其热岛响应[J]. 自然资源遥感, 2024, 36(1): 162-168.
[15] 陆妍玲, 黄娅琦, 周俊芬, 王杰, 韦晶闪. 基于夜光遥感数据的广西县域农村多维脱贫分析[J]. 自然资源遥感, 2024, 36(1): 169-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发