Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 210-217    DOI: 10.6046/zrzyyg.2023150
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
深度卷积语义分割网络在农田遥感影像分类中的对比研究——以河套灌区为例
苏腾飞()
内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018
A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification: A case study of the Hetao irrigation district
SU Tengfei()
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
全文: PDF(5437 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在现代化农业生产管理中,不同类型作物的空间分布是重要的农情信息。从卫星遥感影像中识别农田种类,是获取该类信息的基本途径之一。虽然目前用户可选择的遥感影像地物识别算法较为丰富,但进行可靠的农田分类依旧具有一定的挑战性。该文选取了3类具有代表性的深度卷积语义分割模型,包括UNet,ResUNet和SegNext,对比其在河套灌区高分二号遥感影像上的作物分类性能。在3类算法的框架内,共实现了9种具有不同复杂度的模型,以分析各个网络结构在农田遥感影像作物分类中的性能差异,从而为后续的相关模型研究提供一些优化思路与实验基础。实验结果说明,具有6层网络结构的UNet取得了最高的总精度(88.74%),而6层SegNext的精度最差(84.33%);具有最高模型复杂度的是ResUNet,但对于研究数据集,这类算法的过拟合现象最为严重;在计算效率方面,ResUNet也显著低于另外2类算法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏腾飞
关键词 深度卷积语义分割农田分类河套灌区    
Abstract

In the management of modern agriculture production, the spatial distribution of different crop types is identified as important information about agricultural conditions. Identifying crop types from satellite remote sensing imagery serves as a fundamental method for acquiring such information. Although there exist various algorithms for identifying surface features from remote sensing imagery, reliable farmland classification remains challenging. This study selected three representative semantic segmentation-orientated deep convolutional models, i.e., UNet, ResUNet, and SegNext, and compared their performance in crop classification using remote sensing images of the Hetao irrigation district from the Gaofen-2 satellite. Using the three algorithms, nine network models with varying complexities were developed to analyze the differences in the performance of various network structures in classifying crops in farmland based on remote sensing imagery, thus providing optimization insights and an experimental basis for future research on relevant models. Experimental results indicate that the six-layer UNet achieved the highest identification accuracy (88.74%), while the six-layer SegNext yielded the lowest accuracy (84.33%). The ResUNet displayed the highest complexity but serious over-fitting with the dataset used in this study. Regarding computational efficiency, ResUNet was significantly less efficient than the other two model types.

Key wordsdeep convolution    semantic segmentation    crop filed classification    Hetao irrigation district
收稿日期: 2023-05-23      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“对象级深度学习的河套灌区农田遥感影像分类算法研究”(62361050);内蒙古自治区高等学校科学技术研究项目“对象级主动学习的河套灌区遥感作物分类算法研究”(NJZY22495)
作者简介: 苏腾飞(1987-),男,硕士,实验师,主要从事农业遥感影像分析与深度学习算法研究。Email:stf1987@126.com
引用本文:   
苏腾飞. 深度卷积语义分割网络在农田遥感影像分类中的对比研究——以河套灌区为例[J]. 自然资源遥感, 2024, 36(4): 210-217.
SU Tengfei. A comparative study on semantic segmentation-orientated deep convolutional networks for remote sensing image-based farmland classification: A case study of the Hetao irrigation district. Remote Sensing for Natural Resources, 2024, 36(4): 210-217.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023150      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/210
Fig.1  4层UNet模型的基本结构
Fig.2  ResUNet中的多尺度残差连接模块
层数 d
第一、二层 {1, 3, 15, 31}
第三、四层 {1, 3, 15}
第五、六、七层 {1}
Tab.1  ResUNet中空洞卷积的膨胀参数d的定义情况
Fig.3  SegNext中的多尺度卷积自注意力模块
Fig.4  研究区域与遥感影像数据集
Fig.5  各个深度卷积语义分割网络算法的精度对比
Fig.6-1  3类算法对测试集的最优分类结果
Fig.6-2  3类算法对测试集的最优分类结果
Fig.7  9种深度卷积语义分割网络在训练过程中的总精度变化
Fig.8  9种深度卷积语义分割网络的参数量与计算量对比
[1] Kattenborn T, Leitloff J, Schiefer F, et al. Review on convolutional neural networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173:24-49.
[2] You N, Dong J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161:109-123.
[3] Hao P, Di L, Zhang C, et al. Transfer learning for crop classification with cropland data layer data (CDL) as training samples[J]. Science of the Total Environment, 2020, 733:138869.
[4] 梁继, 郑镇炜, 夏诗婷, 等. 高分六号红边特征的农作物识别与评估[J]. 遥感学报, 2020, 24(10):1168-1179.
Liang J, Zheng Z W, Xia S T, et al. Crop recognition and evaluationusing red edge features of GF-6 satellite[J]. Journal of Remote Sensing, 2020, 24(10):1168-1179.
[5] Gao H, Wang C, Wang G, et al. A novel crop classification method based on ppfSVM classifier with time-series alignment kernel from dual-polarization SAR datasets[J]. Remote Sensing of Environment, 2021, 264:112628.
[6] 马战林, 薛华柱, 刘昌华, 等. 基于主被动遥感数据和面向对象的大蒜识别[J]. 农业工程学报, 2022, 38(2):210-222.
Ma Z L, Xue H Z, Liu C H, et al. Identification of garlic based on active and passive remote sensing data and object-oriented technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(2):210-222.
[7] Zhong Y, Hu X, Luo C, et al. WHU-Hi:UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF[J]. Remote Sensing of Environment, 2020, 250:112012.
[8] Liu S, Zhou Z, Ding H, et al. Crop mapping using sentinel full-year dual-polarized SAR data and a CPU-optimized convolutional neural network with two sampling strategies[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:7017-7031.
[9] Gallo I, Ranghetti L, Landro N, et al. In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 195:335-352.
[10] Li G, Cui J, Han W, et al. Crop type mapping using time-series Sentinel-2 imagery and U-Net in early growth periods in the Hetao irrigation district in China[J]. Computers and Electronics in Agriculture, 2022, 203:107478.
[11] 许晴, 张锦水, 张凤, 等. 深度学习农作物分类的弱样本适用性[J]. 遥感学报, 2022, 26(7):1395-1409.
Xu Q, Zhang J S, Zhang F, et al. Applicability of weak samples to deep learning crop classification[J]. National Remote Sensing Bulletin, 2022, 26(7):1395-1409.
[12] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[J/OL]. arXiv, 2015. https://arxiv.org/abs/1505.04597.pdf.
[13] Diakogiannis F I, Waldner F, Caccetta P, et al. ResUNet-a:A deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162:94-114.
[14] Guo M H, Lu C Z, Hou Q, et al. SegNext:Rethinking convolutional attention design for semantic segmentation[J/OL]. arXiv: 2022(2022-9-18)[2023-8-26]. https://arxiv.org/abs/2209.08575.
[15] Zhang Z, Liu Q, Wang Y. Road extraction by deep residual U-net[J/OL]. arXiv, 2017. https://arxiv.org/abs/1711.10684.pdf.
[16] Baatz M, Schäpe A. Multiresolution segmentation:An optimization approach for high quality multi-scale image segmentation[C]// Angewandte Geographische Informations Verarbeitung XII,Wichmann Verlag, 2000:12-23.
[1] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[2] 潘俊杰, 慎利, 鄢薪, 聂欣, 董宽林. 一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法[J]. 自然资源遥感, 2024, 36(4): 149-157.
[3] 李世琦, 姚国清. 基于CNN与SETR的特征融合滑坡体检测[J]. 自然资源遥感, 2024, 36(4): 158-164.
[4] 罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
[5] 白石, 唐攀攀, 苗朝, 金彩凤, 赵博, 万昊明. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3): 96-107.
[6] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[7] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[8] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[9] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[10] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[11] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[12] 廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类[J]. 自然资源遥感, 2022, 34(2): 152-161.
[13] 郭文, 张荞. 基于注意力增强全卷积神经网络的高分卫星影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 100-107.
[14] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[15] 刘钊, 赵桐, 廖斐凡, 李帅, 李海洋. 基于语义分割网络的高分遥感影像城市建成区提取方法研究与对比分析[J]. 国土资源遥感, 2021, 33(1): 45-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发