Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 218-228    DOI: 10.6046/zrzyyg.2024166
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于多源时序SAR数据的涿州洪涝淹没动态监测
庄会富1(), 王鹏1(), 苏亚男2, 张祥3, 范洪冬1
1.中国矿业大学自然资源部国土环境与灾害监测重点实验室,徐州 221116
2.长沙天仪空间科技研究院有限公司,长沙 410000
3.自然资源部国土卫星遥感应用中心,北京 100094
Dynamic monitoring of flood inundation in Zhuozhou, Hebei Province based on multi-temporal SAR data
ZHUANG Huifu1(), WANG Peng1(), SU Yanan2, ZHANG Xiang3, FAN Hongdong1
1. Key Laboratory of Land Environment and Disaster Monitoring, Ministry of Natural Resources, China University of Mining and Technology, Xuzhou 221116, China
2. Tianyi Space Technology Research Institute, Changsha 410000, China
3. National Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100094, China
全文: PDF(10663 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

合成孔径雷达(synthetic aperture radar, SAR)具有全天时、全天候成像能力,可为大范围洪涝淹没监测提供数据支撑。受SAR影像重访周期等限制,仅利用单一来源的SAR影像数据,难以满足洪灾救援与决策支持对高时效性洪涝淹没动态监测数据的需求。联合多源时序SAR数据进行洪涝淹没动态监测,具有重要的实用价值。然而,不同传感器获取的SAR影像存在较大的时空异质性,难以进行直接比较。此外,以往研究通常利用单像素或局部空间邻域特征提取洪涝淹没范围,忽略了洪涝前后时空非局部特征的使用。为此,该文首先提出了基于后向散射特征的多源SAR数据特征空间对齐方法,然后引入渐进非局部理论提取洪灾前后的差异信息并生成洪涝淹没图,最后对时间序列洪涝淹没图进行逻辑运算得到洪涝淹没动态监测结果。该研究以2023年8月涿州市洪涝灾害为例,利用Sentinel-1、高分三号(GF-3)和涪城一号获取的5幅多源SAR数据,对该文方法进行了实验验证。结果表明: ①与7种常用的洪涝监测方法相比,该文方法具有最优的性能,在验证集Ⅰ上Kappa系数和F1分数分别为0.85和0.88; ②根据涿州洪涝淹没动态监测结果显示,主城区洪水至8月3日基本退去,之后水位逐渐下降,淹没区向下游白沟河方向转移。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庄会富
王鹏
苏亚男
张祥
范洪冬
关键词 洪涝监测合成孔径雷达多源遥感时序监测    
Abstract

Synthetic aperture radar (SAR), allowing for all-weather and all-day imaging, can provide essential data for large-scale flood inundation monitoring. However, limitations such as the revisit period of SAR images make it challenging for single-source SAR data to meet the high temporal requirements for dynamic flood inundation monitoring, which is crucial for disaster relief and decision-making support. Combining multi-temporal SAR data for dynamic flood inundation monitoring is of significant practical value. Nevertheless, SAR images from different sensors exhibit significant spatiotemporal heterogeneity, rendering direct comparisons difficult. Additionally, previous studies frequently extracted flood inundation extents using single-pixel or local spatial neighborhood features while neglecting the application of spatiotemporal non-local features pre- and post-flooding. Therefore, this study first proposed a feature space alignment method for multi-source SAR data based on backscatter characteristics. Then, differential information pre- and post-flooding was extracted using the progressive non-local theory, and flood inundation maps were prepared. Finally, dynamic flood inundation monitoring results were obtained through logical operations of the time-series flood inundation maps. This method was validated using the flood disaster in August 2023 in Zhuozhou, during which five multi-source SAR datasets were acquired from Sentinel-1, Gaofen-3 (GF-3), and Fucheng-1. The results indicate that compared to six commonly used flood monitoring methods, the proposed method exhibited the optimal performance, yielding a Kappa coefficient and F1 score of 0.85 and 0.88, respectively. The dynamic monitoring results of the flood inundation in Zhuozhou reveal that the floodwater in the main urban area largely receded by August 3, and the water levels then gradually decreased, with the inundated areas shifting to the Baigou River in the lower reaches.

Key wordsflood monitoring    synthetic aperture radar (SAR)    multi-source remote sensing    time-series monitoring
收稿日期: 2024-05-06      出版日期: 2024-12-23
ZTFLH:  TP79  
基金资助:自然资源部国土卫星遥感应用重点实验室开放基金“领域知识与数据耦合驱动的时序SAR变化检测方法研究”(KLSMNR-G202205);国家自然科学基金面上项目“基于极化DSInSAR的地下煤火区地表形变监测及反演方法研究”(42274054)
通讯作者: 王鹏(1999-),男,硕士研究生,主要从事洪涝遥感监测。Email: wangpeng18@cumt.edu.cn
作者简介: 庄会富(1990-),男,博士,讲师,主要从事多源遥感信息智能提取。Email: huifuzhuang@163.com
引用本文:   
庄会富, 王鹏, 苏亚男, 张祥, 范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测[J]. 自然资源遥感, 2024, 36(4): 218-228.
ZHUANG Huifu, WANG Peng, SU Yanan, ZHANG Xiang, FAN Hongdong. Dynamic monitoring of flood inundation in Zhuozhou, Hebei Province based on multi-temporal SAR data. Remote Sensing for Natural Resources, 2024, 36(4): 218-228.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024166      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/218
Fig.1  研究区概况
编号 采集日期 卫星传感器 分辨率/m 极化类型
T1 2023-07-24 Sentinel-1A 10 VV
T2 2023-08-01 GF-3 10 HH
T3 2023-08-03 涪城一号 10 VV
T4 2023-08-05 Sentinel-1A 10 VV
T5 2023-08-17 Sentinel-1A 10 VV
Tab.1  多源SAR数据信息
Fig.2  本文定量分析使用的验证数据
Fig.3  本文方法流程图
Tab.2  基于后向散射特征的多源SAR数据特征空间对齐结果
Fig.4  验证集Ⅰ洪水淹没结果
Fig.5  验证集Ⅱ洪水淹没结果
方法 Kappa F1 OA P R
验证集Ⅰ KI 0.300 6 0.453 6 0.751 2 0.378 7 0.565 4
OTSU 0.040 6 0.268 1 0.618 8 0.206 5 0.382 4
K-means 0.040 6 0.268 1 0.618 8 0.206 5 0.382 4
LR 0.438 4 0.510 1 0.862 5 0.729 6 0.392 1
MR 0.772 3 0.809 2 0.937 4 0.912 9 0.726 6
DDNet 0.679 0 0.725 8 0.916 6 0.908 4 0.604 4
PNLI 0.834 8 0.866 1 0.949 1 0.833 1 0.901 9
本文方法T1→T2 0.853 5 0.882 0 0.953 8 0.827 0 0.944 8
本文方法T2→T1 0.859 2 0.886 5 0.955 8 0.835 3 0.944 3
验证集Ⅱ KI 0.719 2 0.758 0 0.931 4 0.654 8 0.899 7
OTSU 0.719 2 0.758 0 0.931 4 0.654 8 0.899 7
K-means 0.719 2 0.758 0 0.931 4 0.654 8 0.899 7
LR 0.727 0 0.763 2 0.936 5 0.687 3 0.857 9
MR 0.788 3 0.813 1 0.956 3 0.829 3 0.797 6
DDNet 0.717 8 0.747 5 0.946 0 0.846 1 0.669 6
PNLI 0.795 6 0.820 1 0.956 9 0.816 1 0.824 1
本文方法T1→T2 0.843 2 0.862 2 0.966 5 0.847 5 0.877 4
本文方法T2→T1 0.844 5 0.863 8 0.966 2 0.833 1 0.896 8
Tab.3  对比方法精度评估
Fig.6-1  涿州市及周边区域洪涝监测结果
Fig.6-2  涿州市及周边区域洪涝监测结果
[1] Hamidi E, Peter B G, Muñoz D F, et al. Fast flood extent monitoring with SAR change detection using google earth engine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:4201419.
[2] 李振洪, 王建伟, 胡羽丰, 等. 大范围洪涝灾害影响下的交通网受损快速评估[J]. 武汉大学学报(信息科学版), 2023, 48(7):1039-1049.
Li Z H, Wang J W, Hu Y F, et al. Rapid assessment of traffic inefficiency under flood scenarios over wide regions[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7):1039-1049.
[3] Blöschl G, Kiss A, Viglione A, et al. Current European flood-rich period exceptional compared with past 500 years[J]. Nature, 2020, 583(7817):560-566.
[4] 眭海刚, 赵博飞, 徐川, 等. 多模态序列遥感影像的洪涝灾害应急信息快速提取[J]. 武汉大学学报(信息科学版), 2021, 46(10):1441-1449.
Sui H G, Zhao B F, Xu C, et al. Rapid extraction of flood disaster emergency information with multi-modal sequence remote sensing images[J]. Geomatics and Information Science of Wuhan Univer-sity, 2021, 46(10):1441-1449.
[5] 李聪妤, 刘家奇, 刘欣鑫, 等. 适应复杂区域的时序SAR影像洪水监测与分析[J]. 遥感学报, 2024, 28(2):346-358.
Li C Y, Liu J Q, Liu X X, et al. Flood monitoring and analysis based on time-series SAR image for complex area[J]. National Remote Sensing Bulletin, 2024, 28(2):346-358.
[6] 阳驰轶, 官海翔, 吴玮, 等. 基于国产GF-3雷达影像的农田洪涝遥感监测方法[J]. 自然资源遥感, 2023, 35(4):71-80.doi:10.6046/zrzyyg.2023141.
Yang C Y, Guan H X, Wu W, et al. Remote sensing monitoring method for flooded farmland based on domestic GF-3 radar images[J]. Remote Sensing for Natural Resources, 2023, 35(4):71-80.doi:10.6046/zrzyyg.2023141.
[7] 何彬方, 姚筠, 冯妍, 等. 基于Sentinel-1A的安徽省2020年梅雨期洪水淹没监测[J]. 自然资源遥感, 2023, 35(1):140-147.doi:10.6046/zrzyyg.2022052.
He B F, Yao Y, Feng Y, et al. Sentinel-1A based flood inundation monitoring in Anhui Province during the plum rain period of 2020[J]. Remote Sensing for Natural Resources, 2023, 35(1):140-147.doi:10.6046/zrzyyg.2022052.
[8] Shen X, Anagnostou E N, Allen G H, et al. Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar[J]. Remote Sensing of Environment, 2019, 221:302-315.
[9] 郭山川, 杜培军, 蒙亚平, 等. 时序Sentinel-1A数据支持的长江中下游汛情动态监测[J]. 遥感学报, 2021, 25(10):2127-2141.
Guo S C, Du P J, Meng Y P, et al. Dynamic monitoring on flooding situation in the middle and lower reaches of the Yangtze River region using Sentinel-1A time series[J]. National Remote Sensing Bulletin, 2021, 25(10):2127-2141.
[10] 张文璇, 王卷乐. 基于SAR影像后向散射特性的中俄黑龙江流域洪水监测[J]. 地球信息科学学报, 2022, 24(4):802-813.
doi: 10.12082/dqxxkx.2022.210018
Zhang W X, Wang J L. Flood monitoring of Heilongjiang River Basin in China and Russia transboundary region based on SAR backscattering characteristics[J]. Journal of Geo-Information Science, 2022, 24(4):802-813.
[11] 黄平平, 段盈宏, 谭维贤, 等. 基于融合差异图的变化检测方法及其在洪灾中的应用[J]. 雷达学报, 2021, 10(1):143-158.
Huang P P, Duan Y H, Tan W X, et al. Change detection method based on fusion difference map in flood disaster[J]. Journal of Radars, 2021, 10(1):143-158.
[12] Twele A, Cao W, Plank S, et al. Sentinel-1-based flood mapping:A fully automated processing chain[J]. International Journal of Remote Sensing, 2016, 37(13):2990-3004.
[13] 冷英, 李宁. 一种改进的变化检测方法及其在洪水监测中的应用[J]. 雷达学报, 2017, 6(2):204-212.
Leng Y, Li N. Improved change detection method for flood monitoring[J]. Journal of Radars, 2017, 6(2):204-212.
[14] Dong Z, Liang Z, Wang G, et al. Mapping inundation extents in Poyang Lake area using Sentinel-1 data and transformer-based change detection method[J]. Journal of Hydrology, 2023, 620:129455.
[15] Zhao B, Sui H, Liu J. Siam-DWENet:Flood inundation detection for SAR imagery using a cross-task transfer Siamese network[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 116:103132.
[16] 张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3):269-277.
doi: 10.11947/j.AGCS.2017.20170049
Zhang Q J. System design and key technologies of the GF-3 sate-llite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):269-277.
[17] Cao Y, Huang X. A full-level fused cross-task transfer learning method for building change detection using noise-robust pretrained networks on crowdsourced labels[J]. Remote Sensing of Environment, 2023, 284:113371.
[18] Zhuang H, Fan H, Deng K, et al. Change detection in SAR images based on progressive nonlocal theory[J]. IEEE Transactions on Geo-science and Remote Sensing, 2022, 60:5229213.
[19] Zhuang H, Hao M, Deng K, et al. Change detection in SAR images via ratio-based Gaussian kernel and nonlocal theory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5210215.
[20] Buades A, Coll B, Morel J M. A non-local algorithm for image denoising[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE, 2005:60-65.
[21] Wong A K C, Sahoo P K. A gray-level threshold selection method based on maximum entropy principle[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1989, 19(4):866-871.
[22] Singh A. Review article digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10(6):989-1003.
[23] Ma J, Gong M, Zhou Z. Wavelet fusion on ratio images for change detection in SAR images[J]. IEEE Geoscience and Remote Sen-sing Letters, 2012, 9(6):1122-1126.
[24] Qu X, Gao F, Dong J, et al. Change detection in synthetic aperture radar images using a dual-domain network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:4013405.
[25] Kanungo T, Mount D M, Netanyahu N S, et al. An efficient k-means clustering algorithm:Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):881-892.
[26] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1979, 9(1):62-66.
[27] Kittler J, Illingworth J. Minimum error thresholding[J]. Pattern Recognition, 1986, 19(1):41-47.
[28] Powers D M W. Evaluation:From precision,recall and F-measure to ROC,informedness,markedness and correlation[J/OL]. arXiv, 2020(2020-10-11). https://arxiv.org/abs/2010.16061.
[1] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[2] 卢献健, 张焕铃, 晏红波, 黎振宝, 郭子扬. 协同Sentinel-1/2多特征优选的甘蔗提取方法[J]. 自然资源遥感, 2024, 36(1): 86-94.
[3] 王煜淼, 李胜, 东春宇, 杨刚. 多特征参数支持的红树林遥感信息提取——以广东省为例[J]. 自然资源遥感, 2024, 36(1): 95-102.
[4] 蒋瑞瑞, 甘甫平, 郭艺, 闫柏琨. 土壤水分多源卫星遥感联合反演研究进展[J]. 自然资源遥感, 2024, 36(1): 1-13.
[5] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[6] 孙盛, 蒙芝敏, 胡忠文, 余旭. 多尺度轻量化CNN在SAR图像地物分类中的应用[J]. 自然资源遥感, 2023, 35(1): 27-34.
[7] 董天成, 杨肖, 李卉, 张志, 齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取[J]. 国土资源遥感, 2021, 33(1): 129-137.
[8] 江珊, 王春, 宋宏利, 刘玉锋. 基于SAR与光学遥感数据相结合的农作物种植类型识别研究[J]. 国土资源遥感, 2020, 32(4): 105-110.
[9] 董家集, 任华忠, 郑逸童, 聂婧, 孟晋杰, 秦其明. 基于多源遥感数据的城市环境宜居性研究——以北京市为例[J]. 国土资源遥感, 2020, 32(3): 165-172.
[10] 周光宇, 刘邦权, 张亶. 基于变分模态分解的SAR图像目标识别方法[J]. 国土资源遥感, 2020, 32(2): 33-39.
[11] 宋国策, 张志. 内蒙古新巴尔虎右旗多金属矿区扬尘风积物遥感监测方法[J]. 国土资源遥感, 2020, 32(2): 46-53.
[12] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
[13] 王念秦, 乔德京, 符喜优. 滤波参数对Goldstein干涉相位图滤波性能的影响分析[J]. 国土资源遥感, 2019, 31(1): 117-124.
[14] 易佳思, 胡翔云. 基于Grabcut融合多源数据提取不透水面[J]. 国土资源遥感, 2018, 30(3): 174-180.
[15] 王阳明, 张景发, 刘智荣, 申旭辉. 基于多源遥感数据西藏山南地区活动断层解译[J]. 国土资源遥感, 2018, 30(3): 230-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发