Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (5): 224-232    DOI: 10.6046/zrzyyg.2024304
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
结合Sentinel-2和GEDI数据的森林地上生物量估测和空间格局分析
王璐1,2,3(), 姬永杰1,2,3(), 董文全4, 张王菲5
1.西南林业大学水土保持学院,昆明 650224
2.云南省山地农村生态环境演变与污染治理重点实验室,昆明 650224
3.国家林业和草原局云南沾益岩溶生态系统定位观测研究站,昆明 650224
4.爱丁堡皇家植物园,爱丁堡 EH3 5LR
5.西南林业大学林学院,昆明 650224
Estimation and spatial pattern analysis of forest above-ground biomass based on Sentinel-2 and GEDI data
WANG Lu1,2,3(), JI Yongjie1,2,3(), DONG Wenquan4, ZHANG Wangfei5
1. College of Soil and Water Conservation,Southwest Forestry University,Kunming 650224,China
2. Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province,Kunming 650224,China
3. Yunnan Zhanyi Karst Ecosystem Positioning Observation and Research Station,National Forestry and Grassland Administration,Kunming 650224,China
4. Royal Botanic Gardens Edinburgh,Edinburgh EH3 5LR,UK
5. College of Forestry,Southwest Forestry University,Kunming 650224,China
全文: PDF(3680 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 森林地上生物量(above-ground biomass,AGB)是森林生产力的重要衡量标准,快速准确地估测森林AGB对森林可持续管理和碳循环研究至关重要。该研究基于全球生态系统动态调查(global ecosystem dynamics investigation,GEDI)星载激光雷达数据和Sentinel-2光学数据,提取GEDI L2B,Sentinel-2遥感特征及研究区地形因子(海拔、坡向、坡度),通过皮尔逊相关性筛选变量,构建偏最小二乘回归(partial least squares regression,PLSR)模型、梯度增强回归树(gradient boosting regression tree,GBRT)模型和随机森林(random forest,RF)模型反演森林AGB,探索其估测森林AGB的潜力,并分析森林AGB空间分布差异。结果表明:多数据源的估测效果始终优于单一数据源,基于GEDI和Sentinel-2数据的RF模型表现最佳(R2为0.76,均方根误差为23.02 t/hm2),GBRT次之,PLSR最差(R2仅为0.26);研究区海拔1 200~1 800 m范围内,森林AGB密度随海拔的升高而增大;坡度的变化对森林AGB密度不敏感,但在险坡处有明显减小;坡向分析显示半阴坡和阳坡的森林AGB密度较高,阴坡和半阳坡相近;坡度-坡向交互分析表明,缓坡和斜坡条件下,分别是半阳坡和阳坡森林AGB总量最高;平地和陡坡以上所有坡向的森林AGB均显著下降,阴坡和半阴坡的降幅更明显。该研究能为省级范围内制定森林保护和培育政策提供科学依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王璐
姬永杰
董文全
张王菲
关键词 Sentinel-2GEDI森林AGBRF模型    
Abstract

Forest above-ground biomass (AGB) is recognized as an important indicator of forest productivity. Rapid and accurate estimation of forest AGB is crucial for sustainable forest management and carbon cycle research. Based on spaceborne light detection and ranging (LiDAR) data from the global ecosystem dynamic investigation (GEDI) and Sentinel-2 optical data,this study extracted GEDI L2B,Sentinel-2 remote sensing features,and topographic factors (elevation,aspect,and slope) in the study area. Among them,variables were determined through Pearson correlation analysis. Then,this study constructed the partial least squares regression (PLSR),gradient boosting regression tree (GBRT),and random forest (RF) models for forest AGB inversion. Consequently,this study estimated these models’ potential for forest AGB estimation and analyzed the spatial distribution differences of forest AGB. The results indicate that the estimation using multi-source data consistently outperformed that using single-source data. Among them,the RF model based on GEDI and Sentinel-2 data exhibited the best performance (R2=0.76,root mean square error (RMSE)=23.02 t/hm2),followed by the GBRT model,while the PLSR model performed the worst (R2=0.26). In terms of spatial distribution,within the elevation range of 1 200~1 800 m,forest AGB density increased with elevation. Slope variation had little effect on forest AGB density,but a pronounced decrease in AGB density was observed on steep slopes. Aspect analysis showed that semi-shaded and sunny slopes exhibited high forest AGB density,while shaded and semi-sunny slopes presented similar values. Slope-aspect interaction analysis revealed that sunny and semi-sunny slopes displayed the highest total forest AGB on gentle and moderate slopes,respectively. In contrast,forest AGB significantly decreased across all orientations on flat and steep slopes,with a more significant decline observed on shaded and semi-shaded slopes. These findings provide a scientific basis for formulating forest protection and cultivation policies at the provincial level.

Key wordsSentinel-2    global ecosystem dynamics investigation (GEDI)    forest above-ground biomass (AGB)    random forest (RF) model
收稿日期: 2024-09-20      出版日期: 2025-10-28
ZTFLH:  S771.8  
  TP79  
基金资助:国家自然科学基金项目“融合多频星载SAR和LiDAR数据的全国尺度森林地上生物量估测”(32471865);“多频极化干涉SAR森林高度反演机理模型构建及其不确定性研究”(32371869);“森林生物量多维度SAR估测方法研究”(32160365)
通讯作者: 姬永杰(1979-),男,博士,副教授,主要从事SAR自然资源遥感研究。Email:jiyongjie@live.cn
作者简介: 王 璐(1998-),女,硕士,主要从事林业遥感研究。Email:wanglu8008@swfu.edu.cn
引用本文:   
王璐, 姬永杰, 董文全, 张王菲. 结合Sentinel-2和GEDI数据的森林地上生物量估测和空间格局分析[J]. 自然资源遥感, 2025, 37(5): 224-232.
WANG Lu, JI Yongjie, DONG Wenquan, ZHANG Wangfei. Estimation and spatial pattern analysis of forest above-ground biomass based on Sentinel-2 and GEDI data. Remote Sensing for Natural Resources, 2025, 37(5): 224-232.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024304      或      https://www.gtzyyg.com/CN/Y2025/V37/I5/224
Fig.1  研究区及样地点概况
Fig.2  样地森林AGB值的分布频率
特征名称 物理含义 特征名称 物理含义
sensitivity 灵敏度 pgap_theta 森林冠层间隙率
modis_treecover 根据MODIS数据得出的植被百分比 modis_nonvegetated 根据MODIS数据得出的非植被百分比
pgap_theta_error 森林冠层间隙率的误差 landsat_treecover Landsat树冠覆盖率
rv 波形中植被分量的积分 height_lastbin 相对森林冠层间隙误差的地面高度
rh100 接收波形信号的起始点离地面的高度 fhd_normal 叶片高度多样性指数
rg 波形中地面分量的积分 digital_elevation_model 数字高程模型高于WGS84椭圆形的高度
pai 植被总面积指数 cover 树冠总覆盖率
shot number 激光点号 degrade_flag 指向或定位信息降级状态的标志
lat_lowestmode 最低模式中心的纬度 lon_lowestmode 最低模式中心的经度
quality_flag 标记以简化最有用数据的选择 leaf_off_flag 指示观察是否在落叶林条件下记录
beam 激光器强弱指示
Tab.1  GEDI L2B数据特征信息
类型 特征名称
原始波段 B2,B3,B4,B5,B6,B7,B8,B11
植被指数 归一化植被指数、差值植被指数、比值植被指数、变换的归一化差异植被指数、绿色标准化差异植被指数、归一化差异指数、红边拐点指数、Sentinel-2红边位置指数
纹理特征 均值、方差、熵、对比度、同质性、相关性、非相似性、角二阶矩
缨帽变换特征 亮度、绿度、湿度
主成分分析 PCA1,PCA2,PCA3
Tab.2  Sentinel-2数据特征信息
数据源 模型 R2 RMSE/(t·hm-2
Sentinel-2 RF 0.73 24.34
GBRT 0.48 33.72
PLSR 0.14 40.36
Sentinel-2+GEDI RF 0.76 23.02
GBRT 0.60 29.35
PLSR 0.26 37.56
Tab.3  森林AGB模型估测精度
Fig.3  森林AGB预测值与实测值散点图及误差折线图
Fig.4  研究区森林AGB分布图
Fig.5  不同海拔、坡度、坡向的森林AGB分布情况
坡度 坡向 森林
AGB/104 t
坡度 坡向 森林
AGB/104 t
平坡 平地 0.62 陡坡 平地 0.29
阴坡 3.97 阴坡 27.26
半阴坡 4.61 半阴坡 18.44
阳坡 5.16 阳坡 27.25
半阳坡 5.71 半阳坡 22.44
缓坡 平地 0.97 急坡 平地 0.11
阴坡 43.72 阴坡 8.73
半阴坡 35.79 半阴坡 5.85
阳坡 57.95 阳坡 7.47
半阳坡 58.08 半阳坡 5.24
斜坡 平地 0.76 险坡 平地 0.01
阴坡 59.37 阴坡 0.95
半阴坡 38.70 半阴坡 0.80
阳坡 64.98 阳坡 0.60
半阳坡 53.76 半阳坡 0.51
Tab.4  坡度-坡向交互作用下的森林AGB分布情况
[1] Wang M J, Sun R, Xiao Z Q. Estimation of forest canopy height and aboveground biomass from spaceborne LiDAR and Landsat imageries in Maryland[J]. Remote Sensing, 2018, 10(2):344.
[2] 薛春泉, 徐期瑚, 林丽平, 等. 基于异速生长和理论生长方程的广东省木荷生物量动态预测[J]. 林业科学, 2019, 55(7):86-94.
Xue C Q, Xu Q H, Lin L P, et al. Biomass dynamic predicting for Schima superba in Guangdong based on allometric and theoretical growth equation[J]. Scientia Silvae Sinicae, 2019, 55(7):86-94.
[3] 闻馨, 刘凯, 曹晶晶, 等. 基于森林冠层高度和异速生长方程的中国红树林地上生物量估算[J]. 热带地理, 2023, 43(1):1-11.
doi: 10.13284/j.cnki.rddl.003616
Wen X, Liu K, Cao J J, et al. Estimation of mangrove aboveground biomass in China using forest canopy height through an allometric equation[J]. Tropical Geography, 2023, 43(1):1-11.
doi: 10.13284/j.cnki.rddl.003616
[4] Sun G Q, Ranson K J, Guo Z, et al. Forest biomass mapping from Lidar and Radar synergies[J]. Remote Sensing of Environment, 2011, 115(11):2906-2916.
[5] Foody G M, Boyd D S, Cutler M E J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sensing of Environment, 2003, 85(4):463-474.
[6] 李旺, 牛铮, 王成, 等. 机载LiDAR数据估算样地和单木尺度森林地上生物量[J]. 遥感学报, 2015, 19(4):669-679.
Li W, Niu Z, Wang C, et al. Forest above-ground biomass estimation at plot and tree levels using airborne LiDAR data[J]. Journal of Remote Sensing, 2015, 19(4):669-679.
[7] Luo S Z, Wang C, Xi X H, et al. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation[J]. Ecological Indicators, 2017, 73:378-387.
[8] Dubayah R, Blair J B, Goetz S, et al. The global ecosystem dynami-cs investigation:High-resolution laser ranging of the earth’s forests and topography[J]. Science of Remote Sensing, 2020, 1:100002.
[9] 田国帅, 周小成, 郝优壮, 等. 结合修正后的全球生态系统动态调查冠层高度的森林地上生物量模型优化——以福建省为例[J]. 生态学报, 2024, 44(16):7264-7277.
Tian G S, Zhou X C, Hao Y Z, et al. Optimization model of forest aboveground biomass based on MGEDI canopy height:A case study in Fujian,China[J]. Acta Ecologica Sinica, 2024, 44(16):7264-7277.
[10] Guo Q Y, Du S H, Jiang J B, et al. Combining GEDI and sentinel data to estimate forest canopy mean height and aboveground biomass[J]. Ecological Informatics, 2023, 78:102348.
[11] Khati U, Lavalle M, Singh G. The role of time-series L-band SAR and GEDI in mapping sub-tropical above-ground biomass[J]. Frontiers in Earth Science, 2021, 9:752254.
[12] Silva C A, Duncanson L, Hancock S, et al. Fusing simulated GEDI,ICESat-2 and NISAR data for regional aboveground biomass mapping[J]. Remote Sensing of Environment, 2021, 253:112234.
[13] Xu L, Lai H Y, Yu J G, et al. Carbon storage estimation of Quercus aquifolioides based on GEDI spaceborne LiDAR data and Landsat9 images in Shangri-La[J]. Sustainability, 2023, 15(15):11525.
[14] 胥辉, 张会儒. 林木生物量模型研究[M]. 昆明: 云南科技出版社, 2002.
Xu H, Zhang H R. Research on forest biomass models[M]. Kunming: Yunnan Science and Technology Press, 2002.
[15] 韩明辉, 邢艳秋, 李国元, 等. GEDI不同算法组数据反演森林最大冠层高度和生物量精度比较[J]. 中南林业科技大学学报, 2022, 42(10):72-82.
Han M H, Xing Y Q, Li G Y, et al. Comparison of the accuracy of the maximum canopy height and biomass inversion of the data of different GEDI algorithm groups[J]. Journal of Central South University of Forestry & Technology, 2022, 42(10):72-82.
[16] Liu Y H, Zhong Y F, Ma A L, et al. Cross-resolution national-scale land-cover mapping based on noisy label learning:A case study of China[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118:103265.
[17] 刘霜. 基于Sentinel-1/2的重庆市南川区森林生物量估算研究[D]. 成都: 成都理工大学, 2020.
Liu S. Forest biomass estimation in Nanchuan district of Chongqing City using a combination of Sentinel-1 and Sentinel-2 data[D]. Chengdu: Chengdu University of Technology, 2020.
[18] Kauth R J, Thomas G S. The tasselled cap:A graphic description of the spectraltemporal development of agricultural crops as seen by Landsat[C]. Proceedings of the Symposium on Machine Processing of Remotely Sensed Data. West Lafayette: Purdue University, 1976,41-51.
[19] 姜丰, 朱家玲, 胡开永, 等. Pearson相关系数评价ORC系统蒸发器特性的应用研究[J]. 太阳能学报, 2019, 40(10):2732-2738.
Jiang F, Zhu J L, Hu K Y, et al. Applied research to assess envaporator performances in orc system by Pearson correlation coefficient[J]. Acta Energiae Solaris Sinica, 2019, 40(10):2732-2738.
[20] 贺鹏, 张会儒, 雷相东, 等. 基于地统计学的森林地上生物量估计[J]. 林业科学, 2013, 49(5):101-109.
He P, Zhang H R, Lei X D, et al. Estimation of forest above-ground biomass based on geostatistics[J]. Scientia Silvae Sinicae, 2013, 49(5):101-109.
[21] Amarsaikhan E, Erdenebaatar N, Amarsaikhan D, et al. Estimation and mapping of pasture biomass in Mongolia using machine learning methods[J]. Geocarto International, 2023, 38(1):2195824.
[22] Breiman L. Statistical modeling:The two cultures (with comments and a rejoinder by the author)[J]. Statistical Science, 2001, 16(3):199-231.
[23] 罗绍龙, 舒清态, 余金格, 等. 基于序贯高斯条件模拟的GEDI数据联合Landsat8反演森林地上生物量[J]. 林业科学研究, 2024, 37(3):49-60.
Luo S L, Shu Q T, Yu J G, et al. Combined GEDI data and Landsat8 for inversion of forest aboveground biomass based on sequential Gaussian condition simulation[J]. Forest Research, 2024, 37(3):49-60.
[24] Lu D S, Chen Q, Wang G X, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2016, 9(1):63-105.
[25] Li Y C, Li C, Li M Y, et al. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms[J]. Forests, 2019, 10(12):1073.
[26] Zhang Y R, He B B, Chen R, et al. The potential of optical and SAR time-series data for the improvement of aboveground biomass carbon estimation in southwestern China’s evergreen coniferous forests[J]. GIScience & Remote Sensing, 2024, 61(1):2345438.
[27] Rana P, Popescu S, Tolvanen A, et al. Estimation of tropical forest aboveground biomass in Nepal using multiple remotely sensed data and deep learning[J]. International Journal of Remote Sensing, 2023, 44(17):5147-5171.
[28] McEwan R W, Lin Y C, Sun I F, et al. Topographic and biotic regu-lation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan[J]. Forest Ecology and Management, 2011, 262(9):1817-1825.
[29] 刘兴良, 史作民, 杨冬生, 等. 山地植物群落生物多样性与生物生产力海拔梯度变化研究进展[J]. 世界林业研究, 2005, 18(4):27-34.
Liu X L, Shi Z M, Yang D S, et al. Advances in study on changes of biodiversity and productivity along elevational gradient in mountainous plant community[J]. World Forestry Research, 2005, 18(4):27-34.
[30] Ferry B, Morneau F, Bontemps J D, et al. Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest[J]. Journal of Ecology, 2010, 98(1):106-116.
[31] 窦佳慧, 梁宇, 怀保娟, 等. 不同地形条件下青藏高原森林生产力和碳收支动态[J]. 生态学杂志, 2024, 43(6):1521-1530.
Dou J H, Liang Y, Huai B J, et al. Productivity and carbon budget dynamics of forests under different topographic conditions on Tibe-tan Plateau[J]. Chinese Journal of Ecology, 2024, 43(6):1521-1530.
[1] 丁相元, 陈尔学, 赵磊, 范亚雄, 徐昆鹏, 马云梅. 联合机载LiDAR和星载多光谱数据的森林地上生物量异速生长模型构建方法[J]. 自然资源遥感, 2025, 37(3): 123-132.
[2] 马敏, 左震, 韩燕东, 邱野, 乔牡冬. 松嫩平原土壤盐碱化地表基质成因研究[J]. 自然资源遥感, 2025, 37(2): 128-139.
[3] 魏鑫, 任雨, 陈曦东, 胡青峰, 刘辉, 周婧, 宋冬伟, 张培佩, 黄志全. 基于时序Sentinel-2数据水体动态变化监测——以河南省为例[J]. 自然资源遥感, 2024, 36(2): 268-278.
[4] 张闻松, 朱雨欣, 邱玉宝, 王裕涵, 刘金昱, 杨康. 全格陵兰冰盖表面融水卫星遥感观测[J]. 自然资源遥感, 2024, 36(1): 110-117.
[5] 刘美艳, 聂胜, 王成, 习晓环, 程峰, 冯宝坤. 基于ICESat-2和Sentinel-2A数据的森林蓄积量反演[J]. 自然资源遥感, 2024, 36(1): 210-216.
[6] 陈健, 李虎, 刘玉锋, 常竹, 韩伟杰, 刘赛赛. 基于Sentinel-2数据多特征优选的农作物遥感识别研究[J]. 自然资源遥感, 2023, 35(4): 292-300.
[7] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[8] 侯英卓, 纪灵, 邢前国, 盛德志. 卫星遥感辅助的大型海藻养殖动态对比监测——以威海市为例[J]. 自然资源遥感, 2023, 35(2): 34-41.
[9] 田晨, 张金龙, 金义蓉, 董世元, 王彬, 张乃祥. 一种利用贝叶斯优化的蓝藻遥感分类方法[J]. 自然资源遥感, 2023, 35(1): 49-56.
[10] 廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类[J]. 自然资源遥感, 2022, 34(2): 152-161.
[11] 刘春亭, 冯权泷, 金鼎坚, 史同广, 刘建涛, 朱明水. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3): 253-261.
[12] 赵怡, 许剑辉, 钟凯文, 王云鹏, 胡泓达, 吴萍昊. 基于Sentinel-2A和Landsat8的城市不透水面的提取[J]. 国土资源遥感, 2021, 33(2): 40-47.
[13] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[14] 蔡耀通, 刘书彤, 林辉, 张猛. 基于多源遥感数据的CNN水稻提取研究[J]. 国土资源遥感, 2020, 32(4): 97-104.
[15] 刘智丽, 张启斌, 岳德鹏, 郝玉光, 苏凯. 基于Sentinel-2A与NPP-VIIRS夜间灯光数据的城市建成区提取[J]. 国土资源遥感, 2019, 31(4): 227-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发