Please wait a minute...
 
国土资源遥感  2012, Vol. 24 Issue (3): 78-83    DOI: 10.6046/gtzyyg.2012.03.15
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于SPOT5图像的泥石流自动提取方法
谢飞, 杨树文, 李轶鲲, 刘涛
兰州交通大学数理与软件工程学院, 兰州 730070
A Method for Automatic Extraction of Debris Flow Based on SPOT5 Image
XIE Fei, YANG Shu-wen, LI Yi-kun, LIU Tao
School of Mathematics, Physics & Software Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
全文: PDF(1369 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 在前人研究基础上,提出了一种基于SPOT5图像和DEM数据自动提取泥石流的方法。首先利用归一化差值植被指数(NDVI)、归一化差值土壤亮度指数(NDSI)和图像经主成分变换得到的第一主成分(PC1)等3种遥感指数获取新的主成分变换图像,进而利用阈值自动选取算法提取包含泥石流的裸地信息; 然后基于1:10 000的DEM数据,利用改进的沟谷中心线提取算法提取沟谷中心线,并利用数学形态学滤波算法生成沟谷范围; 最后将提取的疑似泥石流图斑与沟谷范围匹配,并对矢量化后的结果进行面积、坡度和顺坡性等筛选,得到泥石流或潜在泥石流信息。实验表明,本文构建的泥石流提取模型具有较高的提取精度和效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乌云其其格
马维峰
张时忠
唐湘丹
刘文婷
关键词 Virtual Globe地质灾害遥感解译标志    
Abstract:Based on achievements obtained by previous researchers,the authors put forward a method for automatically extracting debris flow based on SPOT5 image and DEM data. Firstly,this method uses integrated computing of three indices of remote sensing,i.e., the index of vegetation,the soil brightness index and the first principal component of the image after KL transformation,for the acquisition of a new principal component transformed image,and then extracts the bare land information containing debris flow by using automatic threshold selection algorithm. Secondly,on the basis of the DEM data at the scale of 1:10 000,the valley central lines are extracted by using the improved valley line extraction algorithm,and the valley range is figured out by using the mathematical morphology filtering algorithm. Finally,the suspicious debris flow pattern is matched with the valley range pattern, and the vectorized result is screened in the aspects of area and slope. On such a basis, the information of existing or potential debris flows is obtained. The experimental results show that the extraction model of debris information from SPOT5 image can accurately and effectively extract the debris flow information.
Key wordsVirtual Globe    geological disaster    remote sensing    interpretation marks
收稿日期: 2011-09-23      出版日期: 2012-08-20
:  TP751.1  
基金资助:中铁第四勘察设计院集团有限公司基金项目(编号: 2009D06-1)资助。
引用本文:   
谢飞, 杨树文, 李轶鲲, 刘涛. 基于SPOT5图像的泥石流自动提取方法[J]. 国土资源遥感, 2012, 24(3): 78-83.
XIE Fei, YANG Shu-wen, LI Yi-kun, LIU Tao. A Method for Automatic Extraction of Debris Flow Based on SPOT5 Image. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 78-83.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2012.03.15      或      https://www.gtzyyg.com/CN/Y2012/V24/I3/78
[1] 吴平,郑文晓. 泥石流的形成条件及其防治措施[J].西部探矿工程,2008(3):4-5. Wu P,Zheng W X.Formation Conditions and Preventive Measures of Mudslides[J].West-China Exploration Engineering,2008(3):4-5(in Chinese).
[2] 余斌,杨永红,苏永超,等.甘肃省舟曲8.7特大泥石流调查研究[J].工程地质学报,2010,18(4):437-444. Yu B,Yang Y H,Su Y C,et al.Research on the Giant Debris Flow Hazards in Zhouqu County,Gansu Province on August 7,2010[J].Journal of Engineering Geology,2010,18(4):437-444(in Chinese with English Abstract).
[3] 王一川,秦军.基于DEM自动提取泥石流沟谷边缘线算法的试验[J].四川测绘,2006,29(1):28-31. Wang Y C,Qin J.The Test of Auto Extract Debris Flow Channels’Edge Arithmetic by DEM[J].Surveying and Mapping of Sichuan,2006,29(1):28-31(in Chinese with English Abstract).
[4] 白志勇.陆地卫星SPOT、TM数据复合影象在泥石流调查中的应用[J].水土保持学报,2001,15(1):116-119. Bai Z Y.Application of Synthetic Satellite Image of SPOT and TM Data in Debris Flow Investigation[J].Journal of Soil and Water Conservation,2001,15(1):116-119(in Chinese with English Abstract).
[5] 苏凤环,刘洪江,韩用顺.汶川地震山地灾害遥感快速提取及其分布特点分析[J].遥感学报,2008,12(6):956-963. Su F H,Liu H J,Han Y S.The Extraction of Mountain Hazard Induced by Wenchuan Earthquake and Analysis of Its Distributing Characteristic[J].Journal of Remote Sensing,2008,12(6):956-963(in Chinese with English Abstract).
[6] 唐川,丁军,梁京涛.汶川震区北川县城泥石流源地特征的遥感动态分析[J].工程地质学报,2010,18(1):1-7. Tang C,Ding J,Liang J T.Remote Sensing Images Based Observational Analysis on Characters of Debris Flow Source Areas in Beichuan County of Wenchuan Earthquake Epicenter Region[J].Journal of Engineering Geology,2010,18(1):1-7(in Chinese with English Abstract).
[7] 唐小明,冯杭建,赵建康.基于虚拟GIS和空间分析的小流域泥石流地质灾害遥感解译——以嵊州市为例[J].地质科技情报,2008,27(2):12-16. Tang X M,Feng H J,Zhao J K.Remote Sensing Interpretation of Small-water-basin Debris Flow Based on Virtual GIS and Spatial Analysis:Example from Shengzhou County[J].Geological Science and Technology Information,2008,27(2):12-16(in Chinese with English Abstract).
[8] 潘仲仁,曹林英.遥感技术在成昆铁路泥石流沟调查中的应用[J].铁道工程学报,2006(增刊):237-242. Pan Z R,Cao L Y.Application of Remote Sensing Technology in Surveying Debris Flow of Chengdu-Kunming Railway[J].Journal of Railway Engineering Society,2006(Supplement):237-242(in Chinese with English Abstract).
[9] 陈振民.环境本底值背景值基线值概念的商榷[J].河南地质,2000,18(2):158-160. Chen Z M.Discussion on the Conception of the Environmental Original Value and the Environmental Background Value and the Environmental Baseline Value[J].Henan Geology,2000,18(2):158-160(in Chinese with English Abstract).
[10] 江振蓝,沙晋明,杨武年.基于GIS的福州市生态环境遥感综合评价模型[J].国土资源遥感,2004(3):46-48,60. Jiang Z L,Sha J M,Yang W N.Multiple Factors-based Remote Sensing Evaluation of Ecological Environment in Fuzhou[J].Remote Sensing for Land and Resources,2004(3):46-48,60(in Chinese with English Abstract).
[11] 李洪义,史舟,沙晋明,等.基于人工神经网络的生态环境质量遥感评价[J].应用生态学报,2006,17(8):1475-1480. Li H Y,Shi Z,Sha J M,et al.Evaluation of Eco-environmental Quality Based on Artificial Neural Network and Remote Sensing Technique[J].Chinese Journal of Applied Ecology,2006,17(8):1475-1480(in Chinese with English Abstract).
[12] 江振蓝,沙晋明.植被生态环境遥感本底值研究——以福州市为例[J].福建师范大学学报:自然科学版,2008,24(4):80-85. Jiang Z L,Sha J M.Research into RS Background Value of Vegetation Eco-environment:with Fuzhou Taken as an Example[J].Journal of Fujian Normal University:Natural Science Edition,2008,24(4):80-85(in Chinese with English Abstract).
[13] Rouse J W,Hass R H,Schell J A,et al.Monitoring Vegetation Systems in the Great Plans with ERTS[C]//Proceedings of the Third ERTS Symposium NASA:SP351 I,1973:309-317.
[14] Tsai D M.A Fast Thresholding Selection Procedure for Multimodal and Unimodal Histograms[J].Pattern Recognition Letters,1995,16:653-666.
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[13] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[14] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[15] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发