Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (1): 10-17    DOI: 10.6046/zrzyyg.2021094
     海岸带空间资源及生态健康遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演
丁波1,3(), 李伟2(), 胡克1
1.中国地质大学(北京)海洋学院,北京 100083
2.中国地质调查局烟台海岸带地质调查中心,烟台 264011
3.新玛科技(北京)有限公司,北京 100085
Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data
DING Bo1,3(), LI Wei2(), HU Ke1
1. School of Ocean Sciences, China University of Geosciences (Beijing), Beijng 100083, China
2. Yantai Geological Survey Center of Coastal Zone, China Geological Survey, Yantai 264011, China
3. NewMark Technology (Beijing) Co., Ltd., Beijing 100085, China
全文: PDF(4082 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

悬浮物是近海海湾及潟湖水质的重要影响因素之一。遥感技术能够准确快速地反演水体的悬浮物浓度,但鲜有同时利用2种不同类型的数据源反演同一研究区的悬浮物浓度。该文基于同一时期(2019年9月)的GF-1C光学影像和GF-3微波数据,采用双波段比值算法和Cloude-Pottier分解算法分别对原始影像进行图像分割和目标提取,并在此基础上,结合同期野外采样数据,利用三次多项式回归算法,开展了茅尾海及其入海口水体悬浮物反演。精度分析显示,GF-1C反演模型相关系数(R2)、均方根误差和平均相对误差分别为0.88,130.25 mg/L和9.65%; 而GF-3反演模型对应结果分别为0.61,230.87 mg/L和15.13%,研究表明,GF-1C光学遥感反演精度(90.35%)要好于GF-3微波遥感反演结果(84.87%),但2种反演结果分布具有较高的相似性和一致性,进一步表明基于2种不同数据源建立的反演模型能够为茅尾海悬浮物反演和海岸带环境监测提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁波
李伟
胡克
关键词 悬浮物微波影像光学影像遥感茅尾海    
Abstract

Total suspended matter concentration (TSMC) is one of the important factors influencing water bodies in coastal gulfs and lagoons. The rapid and accurate TSMC inversion can be obtained using remote sensing data. However, it is scarce to conduct TSMC inversion using two different data sources at the same time. This study conducted the inversion of TSMC in Maowei Sea and its estuary based on two data sources. Specifically, this study carried out image segmentation and object extraction using the dual-band ratio algorithm and the Cloude-Pottier target decomposition algorithm, respectively based on GF-1C optical images and GF-3 SAR data of September 2019. Meanwhile, contemporaneous field sample data were utilized. Then, the TSMC inversion was performed using the cubic polynomial regression algorithm. As revealed by the accuracy analysis, the fitting degree (R2), root mean square error, and mean relative percentage error of the GF-1C-based inversion model were 0.88, 130.25 mg/L, and 9.65%, respectively, while those of the GF-3-based inversion model were 0.61, 230.87 mg/L, and 15.13%, respectively. These indicate that the GF-1C-based TSMC inversion had a higher inversion accuracy (90.35%) than the GF-3-based TSMC inversion (84.87%). However, the inversion results of the two models showed highly similar distribution patterns. This further indicates that the inversion models established using two different data sources in this study can serve as references for TSMC inversion of Maowei Sea and its estuary and for the environmental monitoring in coastal zones.

Key wordstotal suspended matter concentration (TSMC)    SAR image    optical image    remote sensing    Maowei Sea
收稿日期: 2021-03-31      出版日期: 2022-03-14
ZTFLH:  TP79  
基金资助:中国地质调查局地质调查项目“广西钦州湾海岸带综合地质调查”资助编号(DD20191024)
通讯作者: 李伟
作者简介: 丁波(1978-),男,硕士,主要从事遥感地质及海岸带地质方面的研究。Email: ding_boo@126.com
引用本文:   
丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021094      或      https://www.gtzyyg.com/CN/Y2022/V34/I1/10
Fig.1  研究区域与野外采样点分布(2019年GF-1C多光谱波段与全色波段融合影像)
取样
编号
悬浮物浓度/(mg·L-1) 取样
日期
平均潮
高/cm
0.5 m深度 5 m深度 10 m深度
1 1 527 822 1 120 2019-09-18 324
2 1 038 1 276 1 201
3 924 1 262 1 020
4 1 030 1 064 989
5 892 1 180 1 104 2019-09-19 345
6 1 124 995 1 418
7 1 216 1 230 962
8 1 036 1 213 1 064
9 1 074 1 464 948
10 1 248 1 394 1 174
11 1 090 1 177 872 2019-09-20 367
12 1 120 1 226 1 186
13 1 149 1 374 1 281
14 1 352 964 1 053
15 1 103 1 204 1 204
Tab.1  研究区悬浮物浓度野外采样数据
数据
类型
传感
分辨
率/m
时相 参数
光学 GF-1C 8 2019-9-26
11: 44: 59 am
多光谱波段 增益 偏差
蓝光波段 0.029 0 0
绿光波段 0.038 2 0
红光波段 0.042 1 0
近红外波段 0.036 4 0
SAR GF-3 8 2019-9-4
11: 01: 40 am
C波段: (VH,VV)
分辨率: 4.5m×4.8m;
入射角: 42.787 378°~
47.954 950°
Tab.2  研究区遥感影像详细信息
Fig.2  不同悬浮物浓度水体与其光谱反射率关系
Fig.3  悬浮物浓度与等效反射率之间的回归关系
反演模型 验证点
数/个
Δrmse/
(mg·L-1)
相对误差/%
最大值 最小值 Δmrpe
GF-1C 8 130.25 17.70 2.15 9.65
GF-3 7 230.87 34.14 5.57 15.13
Tab.3  反演模型精度验证
Fig.4  不同数据源的悬浮物浓度分布
Fig.5  悬浮物浓度反演结果与实测结果对比
[1] 李京, 陈云浩, 刘志刚, 等. 海岛与海岸带环境遥感[M]. 北京: 科学出版社, 2010.
Li J, Chen Y H, Liu Z G, et al. Remote sensing of island and coast environment[M]. Beijing: Science Press, 2010.
[2] Miller R L, McKee B A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters[J]. Remote Sensing of Environment, 2004, 93(1-2):259-266.
doi: 10.1016/j.rse.2004.07.012
[3] Astoreca R, Doxaran D, Ruddick K, et al. Influence of suspended particle concentration,composition and size on the variability of inherent optical properties of the Southern North Sea[J]. Continental Shelf Research, 2012, 35(2):117-128.
doi: 10.1016/j.csr.2012.01.007
[4] May C L, Koseff J R, Lucas L V, et al. Effects of spatial and temporal variability of turbidity on phytoplankton blooms[J]. Marine Ecology Progress Series, 2003, 254(6):111-128.
doi: 10.3354/meps254111
[5] Ondrusek M, Stengel E, Kinkade C S, et al. The development of a new optical total suspended matter algorithm for the Chesapeake Bay[J]. Remote Sensing of Environment, 2012, 119:243-254.
doi: 10.1016/j.rse.2011.12.018
[6] Group S W. GEOTRACES:An international study of the global marine biogeochemical cycles of trace elements and their isotopes[J]. Chemie der Erde, 2007, 67(2):85-131.
doi: 10.1016/j.chemer.2007.02.001
[7] Ouillon S, Douillet P, Petrenko A, et al. Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters[J]. Sensors, 2008, 8(7):4165-85.
doi: 10.3390/s8074165
[8] Shi L L, Mao Z, Wang Z. Retrieval of total suspended matter concentrations from high resolution WorldView-2 imagery:A case study of inland rivers[C]// IOP Conference Series:Earth and Environmental Science, 2018, 121(3):1-12.
[9] Larrarte F, Pons M N. Suspended solids concentration in wastewater:Influence of sampling conditions[J]. Urban Water Journal, 2011, 8(6):397-404.
doi: 10.1080/1573062X.2011.630094
[10] Clark R N. The spectral reflectance of water-mineral mixtures at low temperatures[J]. Journal of Geophysical Research:Solid Earth, 1981, 86(b4):3074-3086.
[11] Kokaly R F, Clark R N, Swayze G A, et al. USGS Spectral Library Version 7[Z].U.S. Geological Survey Data Series 1035, 2017:1-68.
[12] Malinowski R, Groom G, Schwanghart W, et al. Detection and delineation of localized flooding from WorldView-2 multispectral data[J]. Remote Sensing, 2015, 7(11):14853-14875.
doi: 10.3390/rs71114853
[13] Knaeps E, Ruddick K G, Doxaran D, et al. A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters[J]. Remote Sensing of Environment, 2015, 168:66-79.
doi: 10.1016/j.rse.2015.06.022
[14] Wang L, Zhao D Z, Yang J H, et al. Retrieval of total suspended matter from MODIS 250 m imagery in the Bohai Sea of China[J]. Journal of Oceanography, 2012, 68(5):719-725.
doi: 10.1007/s10872-012-0129-5
[15] Giannini M F C, Harari J, Ciotti A M, et al. The use of CBERS(China-Brazil earth resources satellite) to trace the dynamics of total suspended matter at an urbanized coastal area[J]. Brazilian Journal of Oceanography, 2017, 65(2):309-323.
doi: 10.1590/s1679-87592017135006502
[16] Dekker A G, Vos R J, Peters S W M. Comparison of remote sensing data,model results and in situ data for total suspended matter(TSM) in the southern Frisian lakes[J]. The Science of the Total Environment, 2001, 268:197-214.
doi: 10.1016/S0048-9697(00)00679-3
[17] 高晨, 徐健, 高丹, 等. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演[J]. 自然资源遥感, 2019, 31(1):101-109.doi: 10.6046/gtzyyg.2019.01.14.
doi: 10.6046/gtzyyg.2019.01.14
Gao C, Xu J, Gao D, et al. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land and Resources, 2019, 31(1):101-109.doi: 10.6046/gtzyyg.2019.01.14.
doi: 10.6046/gtzyyg.2019.01.14
[18] Ngoc D D, Loisel H, Vantrepotte V, et al. A simple empirical band-ratio algorithm to assess suspended particulate matter from remote sensing over coastal and inland waters of Vietnam:Application to the VNREDSat-1/NAOMI sensor[J]. Water(Switzerland), 2020, 12(9):1-16.
[19] Kishino M, Tanaka A, Ishizaka J. Retrieval of Chlorophyll a,suspended solids,and colored dissolved organic matter in Tokyo Bay using ASTER data[J]. Remote Sensing of Environment, 2005, 99:66-74.
doi: 10.1016/j.rse.2005.05.016
[20] Ciancia E, Campanelli A, Lacava T, et al. Modeling and multi-temporal characterization of total suspended matter by the combined use of Sentinel 2-MSI and Landsat 8-OLI Data:The Pertusillo Lake case study(Italy)[J]. Remote Sensing, 2020, 12(13):1-24.
doi: 10.3390/rs12010001
[21] Moore G. Satellite remote sensing of water turbidity[J]. Hydrological Sciences Bulletin, 1980, 25(4):407-421.
doi: 10.1080/02626668009491950
[22] Chen J F, Zagzebski J A, Madsen E L, et al. Tests of backscatter coefficient measurement using broadband pulses[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 1993, 40(5):603-607.
doi: 10.1109/58.238114
[23] Lavarello R J, Ghoshal G, Oelze M L. On the estimation of backscatter coefficients using single-element focused transducers[J]. The Journal of the Acoustical Society of America, 2011, 129(5):2903-2911.
doi: 10.1121/1.3557036
[24] 刘国祥, 刘文熙, 黄丁发. InSAR技术及其应用中的若干问题[J]. 测绘通报, 2001, 1:21-24.
Liu G X, Liu W X, Huang D F. In SAR technology and its key problems in applications[J]. Bulletin of Surveying and Mapping, 2001, 1:21-24.
[25] Kritikos H, Yorinks L, Smith H. Suspended solids analysis using ERTS-A data[J]. Remote Sensing of Environment, 1974, 3:69-78.
doi: 10.1016/0034-4257(74)90039-X
[26] 王繁, 周斌, 徐建明, 等. 基于实测光谱的杭州湾悬浮物浓度杨反演模式[J]. 环境科学, 2008, 11:3022-3026.
Wang F, Zhou B, Xu J M, et al. Remote sensing inversion mode of suspended particles concentration in Hangzhou Bay based on in situ measurement spectrum[J]. Environmental Science, 2008, 11:3022-3026.
[27] Shi W, Zhang Y L, Wang M H, et al. Deriving total suspended matter concentration from the near-infrared-based inherent optical properties over turbid waters:A case study in Lake Taihu[J]. Remote Sensing, 2018, 10(2):333-350.
doi: 10.3390/rs10020333
[28] 陈炯, 贾海峰, 杨健, 等. 基于极化SAR的河流有机物污染监测研究[J]. 环境科学, 2010, 31(9):2017-2022.
Chen J, Jia H F, Yang J, et al. Monitoring of organic pollutants in river based on polarimetric SAR[J]. Environmental Science, 2010, 31(9):2017-2022.
[29] 中国地质调查局. DD2014-03海岸带地质环境调查评价规范[S]. 北京:中国地质调查局, 2014.
China Geological Survey. DD2014-03 Specification for survey and evaluation of coastal geological environment[S]. Beijing:China Geological Survey, 2014.
[30] 高分系列卫星介绍[N].http://www.cheos.org.cn/n380375/n380413/index.html.
Introduction of GF series satellites[N]. http://www.cheos.org.cn/n380375/n380413/index.html.
[31] Clark R N, Swayze G A, Wise R, et al. USGS digital spectral library splib06a[Z]. U.S.Geological Survey,Digital Data Series 231,2007.
[32] Xu J, Gao C, Wang Y. Extraction of spatial and temporal patterns of concentrations of chlorophyll-a and total suspended matter in Poyang Lake using GF-1 satellite data[J]. Remote Sensing, 2020, 12(4):1-21.
doi: 10.3390/rs12010001
[33] 钟凯文, 刘旭拢, 解靓, 等. 基于遥感方法反演珠江三角洲西江干流悬浮泥沙分布研究[J]. 遥感应用, 2009, 12(3):49-52.
Zhong K W, Liu X L, Xie L, et al. Study on inversion model for the suspended sediment concentration in the Pear River delta using remote sensing technology[J]. Remote Sensing Information, 2009, 12(3):49-52.
[34] Lee J S. A simple speckle smoothing algorithm for synthetic aperture Radar images[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, SMC- 13(1):85-89.
[35] Lee JS, Wen J H, Ainsworth T L, et al. Improved sigma filter for speckle filtering of SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):202-213.
doi: 10.1109/TGRS.36
[36] Lee J S, Grunes M R, Mango S A. Speckle reduction in multipolarization,multifrequency SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(4):535-544.
doi: 10.1109/36.135815
[37] Lee J S, Grunes M, Schuler D, et al. Scattering-model-based Speckle filtering of polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44:176-187.
doi: 10.1109/TGRS.2005.859338
[38] Tian S, Eltoft T. Gamma-WMAP:A wavelet based statistical speckle filter for SAR images[C]// 5th Nordic Signal Processing Symposium, 2002.
[39] López C, Fàbregas X, Mallorquí J, et al. Noise filtering of SAR interferometric phase based on wavelet transform[C]// International Geoscience and Remote Sensing Symposium(IGARSS), 2001:2928-2930.
[40] 卜方玲, 徐新. 一种基于小波分析的SAR图像斑点噪声滤波算法[J]. 武汉大学学报(信息科学版), 2001, 4:315-319.
Bu F L, Xu X. Speckle filtering method of SAR images based on wavelet analysis[J]. Geomatics and Information Science of Wuhan University, 2001, 4:315-319.
[41] Cloude S R, Pottier E. A review of target decomposition theorems in Radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2):498-518.
doi: 10.1109/36.485127
[42] 曹芳, 洪文, 吴一戎. 基于Cloude-Pottier目标分解和聚合的层次聚类算法的全极化SAR数据的非监督分类算法研究[J]. 电子学报, 2008, 3:543-546.
Cao F, Hong W, Wu Y R. An unsupervised classification for fully polarimetric SAR data using Cloude-Pottier decomposition and agglomerative hierarchical clustering algorithm[J]. Acta Electronica Sinica, 2008, 3:543-546.
[43] 杨杰, 郎丰铠, 李德仁. 一种利用Cloude-Pottier分解和极化白化滤波的全极化SAR图像分类算法[J]. 武汉大学学报(信息科学版), 2011, 36(1):104-107.
Yang J, Lang F K, Li D R. An unsupervised Wishart classification for fully polarimetric SAR image based on Cloude-Pottier decomposition and polarimetric whitening filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1):104-107.
[44] 曹仕, 刘湘南, 刘美玲, 等. 基于Radarsat-2目标极化分解H-α特征空间的海洋悬浮物浓度监测研究[J]. 热带海洋学报, 2013, 32(4):107-112.
Cao S, Liu X N, Liu M L, et al. Monitoring marine suspended particulate matter concentration using full polarimetric SAR data of Radarsat-2[J]. Journal of Tropical Oceanography, 2013, 32(4):107-112.
[45] 黄洪辉, 廖秀丽, 戴明, 等. 茅尾海生态环境调查与现状评估报告[R]. 广州:中国水产科学研究院, 2013.
Huang H H, Liao X L, Dai M, et al. Report of ecological environment and status assessment in Maowei Sea[R]. Guangzhou:Chinese Academy of Fishery Sciences, 2013.
[1] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[2] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[3] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[4] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[5] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[6] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[7] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[8] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[9] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[10] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[11] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[12] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[13] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[14] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[15] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发