Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (1): 68-74    DOI: 10.6046/gtzyyg.2015.01.11
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于AMSR-E数据的中国地区微波湿度指数研究
李爽, 宋小宁, 王亚维, 王睿馨
中国科学院大学资源与环境学院, 北京 100049
Research on microwave remote sensing of soil moisture index in China based on AMSR-E
LI Shuang, SONG Xiaoning, WANG Yawei, WANG Ruixin
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(4991 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

土壤中的水分是地球生态系统的重要组成部分,在全球水循环中发挥着重要的作用。基于被动微波数据提取的湿度指数因其具有全天候、高时间分辨率和数据处理简单等优点,大大推进了大范围地区土壤湿度的重复观测。基于AMSR-E(advanced microwave scanning radiometer-earth observing system)数据提取了8种微波湿度指数,利用密云和汉中气象台站的数据,分别对各个微波湿度指数进行时间序列分析,通过比较得到与降水量相关性较好的垂直极化多时相微波湿度指数PIV,6.9和比值指数DIV,10.7; 在此基础上,分析该2种微波湿度指数在密云和汉中10像元×12像元矩形区域随降水量的变化; 同时,与10.7 GHz的微波极化差异指数 (microwave polarization difference index,MPDI)进行比较,评价3种指数对土壤湿度的监测优劣; 在全国范围内,分别对3种微波湿度指数与降水量进行相关分析,得到全国土壤湿度监测的最优指数。结果表明: PIV,6.9作为一种新的微波湿度指数效果最优,可以用于全国范围的土壤湿度监测研究。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雅洲
谢小平
关键词 遥感GIS城镇化生态易损性南四湖    
Abstract

Soil moisture is a very important part of earth ecosystem and plays an important role in global water cycle. Passive microwave has advantages of all-weather and high temporal resolution, and its data processing is simple; therefore soil moisture index extracted from passive microwave data greatly promote the repeated observations of soil moisture in large areas. 8 kinds of microwave remote sensing soil moisture indices were extracted from AMSR-E data, half of which were put forward in the past and half of which were newly raised. And then their variation trends were compared with each other at Miyun and Hanzhong, the two meteorological stations, and the data obtained showed that PIV,6.9 and DIV,10.7 were respectively related to the precipitation. Afterwards, the precipitation monitoring of PIV,6.9, DIV,10.7 and MPDI10.7 at two 10 pixels×12 pixels rectangle areas, including Miyun and Hanzhong respectively, were comparatively studied. Finally, precipitation on August 21th was interpolated in the whole country, and distributions of precipitation and three soil moisture indices were comparatively analyzed, which were PIV,6.9, DIV,10.7 and MPDI10.7. The result shows that PIV,6.9 seems to be the best index for soil moisture monitoring, and also the best choice in soil moisture monitoring in China at present.

Key wordsremote sensing    GIS    urbanization    eco-vulnerability    Nansi Lake
收稿日期: 2013-12-10      出版日期: 2014-12-08
:  TP79  
作者简介: 李爽(1989-),女,硕士研究生,研究方向为生态环境遥感。Email: lishuang211@mails.ucas.ac.cn。
引用本文:   
李爽, 宋小宁, 王亚维, 王睿馨. 基于AMSR-E数据的中国地区微波湿度指数研究[J]. 国土资源遥感, 2015, 27(1): 68-74.
LI Shuang, SONG Xiaoning, WANG Yawei, WANG Ruixin. Research on microwave remote sensing of soil moisture index in China based on AMSR-E. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 68-74.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.01.11      或      https://www.gtzyyg.com/CN/Y2015/V27/I1/68

[1] 李芹.青藏高原地区主被动微波遥感联合反演土壤水分的研究[D].北京:首都师范大学,2011. Li Q.Retrieving of Soil Moisture over the Tibetan Plateau with Active Microwave Remote Sensing and Passive Microwave Remote Sensing[D].Beijing:Capital Normal University,2011.

[2] 任鑫.多极化、多角度SAR土壤水分反演算法研究[D].北京:中国科学院研究生院(遥感应用研究所),2004. Ren X.Retrieving of Soil Moisture with Multi-polarization,Multi-angle SAR[D].Beijing:Graduate University of Chinese Academy of Sciences(Institute of Remote Sensing Applications Chinese Academy of Sciences),2004.

[3] 杨立娟,武胜利,张钟军.利用主被动微波遥感结合反演土壤水分的理论模型分析[J].国土资源遥感,2011,23(2):53-58. Yang L J,Wu S L,Zhang Z J.A model analysis using a combined active/passive microwave remote sensing approach for soil moisture retrieval[J].Remote Sensing for Land and Resources,2011,23(2):53-58.

[4] 李欣欣,张立新,蒋玲梅.山区地形对被动微波遥感影响的研究进展[J].国土资源遥感,2011,23(3):8-13. Li X X,Zhang L X,Jiang L M.Advances in the study of mountainous relief effects on passive microwave remote sensing[J].Remote Sensing for Land and Resources,2011,23(3):8-13.

[5] 郑有飞,徐芳,詹习武,等.基于AMSR-E数据的被动微波遥感干旱指数研究[J].南京气象学院学报,2009,32(2):189-195. Zheng Y F,Xu F,Zhan X W,et al.Drought indices from passive microwave remote sensing AMSR-E data[J].Journal of Nanjing Institute of Meteorology,2009,32(2):189-195.

[6] Gupta A,Thapliyal P K,Pal P K.Identification of dry and wet soil conditions using TRMM/TMI brightness temperatures and potential for drought monitoring[J].International Journal of Remote Sensing,2007,28(6):1425-1431.

[7] Njoku E G,Jackson T J,Lakshmi V,et al.Soil moisture retrieval from AMSR-E[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(2):215-229.

[8] Paloscia S,Macelloni G,Pampaloni P,et al.Retrieval of soil moisture data at global scales with AMSR-E[J].URSI symposium,New-Delhi,2005.

[9] Owe M,de Jeu R,Walker J.A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(8):1643-1654.

[10] Wigneron J P,Calvet J C,Pellarin T,et al.Retrieving near-surface soil moisture from microwave radiometric observations:Current status and future plans[J].Remote Sensing of Environment,2003,85(4):489-506.

[11] 颜锋华,金亚秋.星载微波SSM/I多时相辐射观测的特征指数监测与评估2003年7月中国淮河流域汛情[J].地球物理学报,2005,48(4):775-779. Yan F H,Jin Y Q.Monitoring China's Huaihe flooding in summer 2003 using characteristic indexes derived from microwave SSM/I multi-temporal observations[J].Chinese Journal of Geophysics,2005,48(4):775-779.

[12] 马媛.新疆土壤湿度的微波反演及应用研究[D].乌鲁木齐:新疆大学,2007. Ma Y.Study on Soil Moisture Inversion and Application with Microwave Remote Sensing in Xinjiang[D].Urumqi:Xinjiang University,2007.

[13] 刘万侠,刘旭拢,翁丰惠,等.基于AMSR-E被动微波遥感数据的广东省土壤水分变化监测[J].热带地理,2011,31(3):272-277. Liu W X,Liu X L,Weng F H,et al.Monitoring of soil moisture variation based on AMSR-E passive microwave remote sensing[J].Tropical Geography,2011,31(3):272-277.

[14] Achutuni R,Ladue J G,Scofield R A,et al.A soil wetness index for monitoring the Great Flood of 1993[G]//The Seventh Conference on Satellite Meteorology and Oceanography.Monterey,California:AMS,1994.

[15] Basist A,Grody N C,Peterson T C,et al.Using the Special Sensor Microwave/Imager to monitor land surface temperatures,wetness,and snow cover[J].Journal of Applied Meteorology,1998,37(9):888-911.

[16] Basist A,Williams C Jr,Ross T F,et al.Using the Special Sensor Microwave Imager to monitor surface wetness[J].Journal of Hydrometeorology,2001,2:297-308.

[17] Cashion J,Lakshmi V,Bosch D,et al.Microwave remote sensing of soil moisture:Evaluation of the TRMM microwave imager(TMI)satellite for the Little River Watershed Tifton,Georgia[J].Journal of Hydrology,2005,307(1-4):242-253.

[18] Koike T,Tsukamoto T,Kumakura T,et al.Spatial and seasonal distribution of surface wetness derived from satellite data[J].Proc of the International Workshop on Macroscale Hydrological Modeling,1996:87-96.

[19] Lacava T,Di Leo E V,Pergola N,et al.Space–time soil wetness variations monitoring by a multi-temporal microwave satellite records analysis[J].Physics and Chemistry of the Earth,Parts A/B/C,2006,31(18):1274-1283.

[20] Zhao B L,Yao Z Y,Li W B,et al.Rainfall retrieval and flooding monitoring in China using TRMM Microwave Imager(TMI)[J].Journal of the Meteorological Society of Japan Ser II,2001,79(1B):301-315.

[21] 徐芳.AMSR-E数据监测干旱的方法研究及其在河北省干旱监测中的应用[D].南京:南京信息工程大学,2008. Xu F.A Study on Microwave Drought Indices Using AMSR-E Data and Aplication in Hebei Province[D].Nanjing:Nanjing University of Information Science and Technology,2008.

[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[5] 武艺杰, 孔雪松. 江苏省“生态-农业-建设”用地空间格局模拟及发展模式选择[J]. 自然资源遥感, 2022, 34(1): 238-248.
[6] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[7] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[8] 李东, 唐诚, 邹涛, 侯西勇. 近海人工鱼礁水下物理状态探测与评估[J]. 自然资源遥感, 2022, 34(1): 27-33.
[9] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[10] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[11] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[12] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[13] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[14] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[15] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发