Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (4): 64-70    DOI: 10.6046/gtzyyg.2016.04.10
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
融合像元形状和光谱信息的高分遥感图像分类新方法
杨青山1, 张华2
1. 武汉大学遥感信息工程学院, 武汉 430079;
2. 中国矿业大学(徐州)环境与测绘学院, 徐州 221116
A new method for classification of high spatial resolution remotely sensed imagery based on fusion of shape and spectral information of pixels
YANG Qingshan1, ZHANG Hua2
1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
2. School of Environment Science and Spatial Informatics, China University of Mining and Technology(Xuzhou), Xuzhou 221116, China
全文: PDF(9533 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在高空间分辨率(简称“高分”)遥感图像分类中,由于存在“同谱异物”等现象,仅依靠光谱信息进行分类的误差较大。为提高图像分类精度,提出一种融合像元形状和光谱特征信息的高分多光谱遥感图像分类新方法。首先利用像元及其邻域的关系来描述其空间结构,计算并提取像元同质区域(pixel homogeneous regions,PHR);然后以所提取的同质区域为基础,分别计算中心像元的长/宽比(length-width ratio,LW)和面积/周长比(area-perimeter ratio,PAI)这2个像元形状特征;最后将归一化后的像元形状特征和光谱特征融合,并利用支持向量机分类方法进行分类。以2个区域的QuickBird高分遥感图像对该算法进行验证,将实验结果与仅利用光谱信息分类和仅使用像元形状指数(pixel shape index,PSI)分类的结果进行比较。结果表明,所提出的方法得到的分类精度最高,该方法能有效地提高高分遥感图像的分类精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张炳先
李岩
何红艳
关键词 热红外影像辐射校正分类在轨统计    
Abstract

In the classification of high spatial resolution remotely sensed imagery,due to the presence of the same object with different spectra, the dependence only on spectral information for classification is not enough. To improve the accuracy of classification, the authors proposed a novel spatial features extraction method for classification of the HSRMI. Firstly, neighborhood pixels' spatial relationship was described and used to calculate and extract the pixel homogeneous regions (PHR). Then, based on the extracted PHR, the pixels' shape index features, including length-width ratio(LW) and area-perimeter ratio(PAI), were extracted. Lastly, the pixel shape index features were normalized and combined with the spectral information to perform classification by using SVM classification method. Two different areas' QuickBird images were used to test the performance of proposed method. The experimental results show that the proposed method has the highest performance compared with pixel shape index(PSI) and spectral information, and can improve the classification accuracy of high spatial resolution remotely sensed imagery.

Key wordsthermal-infrared images    radiometric calibration    classification    on-orbit statistics
收稿日期: 2016-01-13      出版日期: 2016-10-20
:  TP751.1  
通讯作者: 张华(1979-),男,博士,副教授,主要从事遥感数据不确定性、空间分析及GIS算法与应用系统开发等方面的研究。Email:zhhua_79@163.com。
作者简介: 杨青山(1993-),男,硕士研究生,主要研究方向为GIS和遥感图像处理与特征提取。Email:wilm_yang@foxmail.com。
引用本文:   
杨青山, 张华. 融合像元形状和光谱信息的高分遥感图像分类新方法[J]. 国土资源遥感, 2016, 28(4): 64-70.
YANG Qingshan, ZHANG Hua. A new method for classification of high spatial resolution remotely sensed imagery based on fusion of shape and spectral information of pixels. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 64-70.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.04.10      或      https://www.gtzyyg.com/CN/Y2016/V28/I4/64

[1] 郑淑丹,郑江华,石明辉,等.基于分形和灰度共生矩阵纹理特征的种植型药用植物遥感分类[J].遥感学报,2014,18(4):868-886. Zheng S D,Zheng J H,Shi M H,et al.Classification of cultivated Chinese medicinal plants based on fractal theory and gray level co-occurrence matrix textures[J].Journal of Remote Sensing,2014,18(4):868-886.
[2] 李厚强,刘政凯,林峰.基于分形理论的航空图像分类方法[J].遥感学报,2001,5(5):353-357. Li H Q,Liu Z K,Lin F.Aerial image classification method based on fractal theory[J].Journal of Remote Sensing,2001,5(5):353-357.
[3] 陈秋晓,骆剑承,周成虎,等.基于多特征的遥感影像分类方法[J].遥感学报,2004,8(3):239-245. Chen Q X,Luo J C,Zhou C H,et al.Classification of remotely sensed imagery using multi-features based approach[J].Journal of Remote Sensing,2004,8(3):239-245.
[4] 张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J]. 遥感学报,2006,10(1):49-57. Zhang J S,He C Y,Pan Y Z,et al.The high spatial resolution RS image classification based on SVM method with the multi-source data[J].Journal of Remote Sensing,2006,10(1):49-57.
[5] 黄昕,张良培,李平湘.融合形状和光谱的高空间分辨率遥感影像分类[J].遥感学报,2007,11(2):193-200. Huang X,Zhang L P,Li P X.Classification of high spatial resolution remotely sensed imagery based on the fusion of spectral and shape features[J].Journal of Remote Sensing,2007,11(2):193-200.
[6] Shackelford A K,Davis C H.A hierarchical fuzzy classification approach for high-resolution multispectral data over urban areas[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):1920-1932.
[7] Han Y,Kim H,Choi J,et al.A shape-size index extraction for classification of high resolution multispectral satellite images[J].International Journal of Remote Sensing,2012,33(6):1682-1700.
[8] 薛丽霞,李涛,王佐成.一种自适应的Canny边缘检测算法[J].计算机应用研究,2010,27(9):3588-3590. Xue L X,Li T,Wang Z C.Adaptive Canny edge detection algorithm[J].Application Research of Computers, 2010,27(9):3588-3590.
[9] 付纪刚.基于支持向量机的边缘检测算法研究[D].西安:西安科技大学,2011. Fu J G.Research of Edge Detection Based on Support Vector Machine[D].Xi'an:Xi'an University of Science and Technology,2011.
[10] 张华.遥感数据可靠性分类方法研究[D].徐州:中国矿业大学,2012. Zhang H.Study on Reliable Classification Methods Based on Remotely Sensed Image[D].Xuzhou:China University of Mining and Technology,2012.
[11] Chang C C,Lin C J.LIBSVM:A library for support vector machines[EB/OL].2001.http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
[12] Huang X,Zhang L P,Li P X.Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery[J].IEEE Geoscience and Remote Sensing Letters,2007,4(2):260-264.
[13] Zhang L P,Huang X,Huang B,et al.A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(10):2950-2961.

[1] 史飞飞, 高小红, 肖建设, 李宏达, 李润祥, 张昊. 基于集成学习和多时相遥感影像的枸杞种植区分类[J]. 自然资源遥感, 2022, 34(1): 115-126.
[2] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[3] 李渊, 毋琳, 戚雯雯, 郭拯危, 李宁. 基于改进OGMRF-RC模型的SAR图像分类方法[J]. 自然资源遥感, 2021, 33(4): 98-104.
[4] 范莹琳, 娄德波, 张长青, 魏英娟, 贾福东. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4): 153-161.
[5] 白俊龙, 王章琼, 闫海涛. K-means聚类引导的无人机遥感图像阈值分类方法[J]. 自然资源遥感, 2021, 33(3): 114-120.
[6] 王镕, 赵红莉, 蒋云钟, 何毅, 段浩. 月尺度农作物提取中GF-1 WFV纹理特征的应用及分析[J]. 自然资源遥感, 2021, 33(3): 72-79.
[7] 蒋校, 钟昶, 连铮, 吴亮廷, 邵治涛. 卫星遥感地质信息产品分类标准研究进展[J]. 自然资源遥感, 2021, 33(3): 279-283.
[8] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[9] 孟清, 白红英, 赵婷, 郭少壮, 齐贵增. 秦岭山地对气溶胶的生态屏障效应[J]. 国土资源遥感, 2021, 33(1): 240-248.
[10] 许赟, 许艾文. 基于随机森林的遥感影像云雪雾分类检测[J]. 国土资源遥感, 2021, 33(1): 96-101.
[11] 张莉, 谢亚楠, 屈辰阳, 汪鸣泉, 常征, 王茂华. 基于K-Means城市分类算法的夜光遥感电力消费估算[J]. 国土资源遥感, 2020, 32(4): 182-189.
[12] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[13] 王跃峰, 武慧智, 何姝珺, 黄頔, 白朝军. 河南省信阳市浉河区自然资源智能化信息提取技术方法研究[J]. 国土资源遥感, 2020, 32(4): 244-250.
[14] 孙珂. 融合超像元与峰值密度特征的遥感影像分类[J]. 国土资源遥感, 2020, 32(4): 41-45.
[15] 江珊, 王春, 宋宏利, 刘玉锋. 基于SAR与光学遥感数据相结合的农作物种植类型识别研究[J]. 国土资源遥感, 2020, 32(4): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发