Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (1): 247-254    DOI: 10.6046/gtzyyg.2019.01.32
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于遥感和航磁多源数据研究莲花山深大断裂在广东及相邻海域的延伸
夏玲燕1,2, 林畅松1, 李筱2, 胡悦2
1.中国地质大学(北京)海洋学院,北京 100083
2.中国自然资源航空物探遥感中心,北京 100083
A study of extension of Lianhuashan fault in Guangdong to adjacent marine space based on remote sensing and aeromagnetic data
Lingyan XIA1,2, Changsong LIN1, Xiao LI2, Yue HU2
1.School of Ocean Sciences, China University of Geosciences, Beijing 100083, China
2.China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(11342 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

以莲花山断裂在广东及相邻海域的延伸为研究对象,在陆域收集ETM+数据对断裂带的地形地貌进行遥感影像解译,在海域使用实测航磁数据推断断裂构造特征,分析了莲花山断裂对珠江口盆地的沉积控制作用。遥感解译结果显示,莲花山断裂带呈NE向束状线性特征,南北两支主干断裂沿西南向入海。断裂带主体为东陡西缓的山脉,两侧为低丘和平原,沿断裂带常发育NE向直线型河,东部山脉多发育深切的"V"型沟谷、直立陡崖或断层三角面; 磁场特征显示,北支主断裂延伸至珠江口盆地北侧,南支主断裂穿过珠江口盆地直至海南岛东南侧,沿断裂带岩浆活动明显。莲花山断裂带为不同磁场特征的分区界线,控制了珠江口盆地的基底结构、NEE向断裂和深源岩浆活动,是珠江口盆地一级控盆深断裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏玲燕
林畅松
李筱
胡悦
关键词 遥感影像磁场莲花山断裂珠江口盆地    
Abstract

Studies suggest that Lianhuashan fault has extended to marine space. Based on remote sensing image interpretation using terrestrial ETM+ data and structural characteristics of aeromagnetic deduced faults in marine space, the authors analyzed sedimentary control of the Lianhuashan fault on the Pearl River Mouth Basin. On the one hand, the result of remote sensing interpretation shows that Lianhuashan fault zone presents a NE-trending fascicular linear feature with two branches extending into the sea in SW direction. The main fault belt is a mountain with low hills and plains on both sides characterized by steepness in the east and gentleness in the west. The authors found that the NE-trending straight line river is developed along the fault zone, and the eastern side of mountains develops deep "V" ravines, vertical cliffs or fault triangles. On the other hand, the magnetic field feature reveals that the branch has extended to the north of Pearl River Mouth Basin and the south branch has passed through Pearl River Mouth Basin to the south of Hainan Island. Magmatic activity is developed obviously along the fault belt. The Lianhuashan fault zone is the dividing line of different magnetic fields, which dominate the NEE-trending basement structure of the Pearl River Mouth Basin with deep source magma activity. It is the first stage deep fault in the Pearl River Mouth Basin.

Key wordsremote sensing image    magnetic field    Lianhuashan fault    Pearl River Mouth basin
收稿日期: 2018-05-10      出版日期: 2019-03-14
:  P31  
基金资助:中国地质局地质调查项目"海南岛及周边航空物探调查"(121201203000160014)
作者简介: 夏玲燕(1982-),女,博士研究生,主要研究方向为物探及海洋地质。Email: 68340428@qq.com。
引用本文:   
夏玲燕, 林畅松, 李筱, 胡悦. 基于遥感和航磁多源数据研究莲花山深大断裂在广东及相邻海域的延伸[J]. 国土资源遥感, 2019, 31(1): 247-254.
Lingyan XIA, Changsong LIN, Xiao LI, Yue HU. A study of extension of Lianhuashan fault in Guangdong to adjacent marine space based on remote sensing and aeromagnetic data. Remote Sensing for Land & Resources, 2019, 31(1): 247-254.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.01.32      或      https://www.gtzyyg.com/CN/Y2019/V31/I1/247
Fig.1  广东省莲花山断裂带区域地质构造简图(据参考文献[11]修改)
波段 波段名称 波长范围/μm 空间分辨率/m
B1 蓝绿色 0.450.52 30
B2 绿色 0.530.61 30
B3 红色 0.630.69 30
B4 近红外 0.780.90 30
B5 短波红外 1.551.75 30
B6 热红外 10.4012.50 60
B7 短波红外 2.092.35 30
B8 全色 0.520.90 15
Tab.1  Landsat7卫星的ETM+波段特征
Fig.2  广东莲花山断裂带ETM+影像及线环构造遥感解译简图
Fig.3  莲花山北部主干断裂野外照片
Fig.4  莲花山断裂带岩浆岩侵入野外照片
Fig.5  黄埠镇花岗岩遥感影像特征
Fig.6  南海北部及邻区原始磁异常图
Fig.7  南海北部及邻区化极磁异常图
Fig.8  南海北部及邻区化极上延10 km磁异常图
Fig.9  珠江口盆地磁性基底深度图
Fig.10  珠江口盆地莲花山断裂构造特征图(位置见图9中测线A-A')
[1] 刘以宣 . 华南沿海的活动断裂[J]. 海洋地质与第四纪地质, 1985,5(3):11-13.
Liu Y X . The active fractures in South China Coast[J]. Marine Geology and Quaternary Geology, 1985,5(3):11-13.
[2] 郭令智, 舒良树, 卢华复 , 等. 中国地体构造研究进展综述[J]. 南京大学学报(自然科学版), 2000,36(1):1-12.
doi: 10.3321/j.issn:0469-5097.2000.01.001
Guo L Z, Shu L S, Lu F H , et al. A synthetical review on research advances on the terrane tectonics in China[J]. Journal of Nanjing Iniversity(Natrual Sciences), 2000,36(1):1-12.
[3] 舒良树 . 华南构造演化基本特征[J]. 地质通报, 2012,31(7):1035-1050.
doi: 10.3969/j.issn.1671-2552.2012.07.003
Shu L S . An analysis of principal features of tectonic evolution in South China Block[J]. Geology Bulletin of China, 2012,31(7):1035-1050.
[4] 刘以宣, 卓家仑 . 珠江口—红海湾沿海的活动断裂[J]. 热带海洋, 1983,2(3):173-181
Liu Y X, Zhuo J L . The coastal active fracture along Zhujiangkou(Pearl River Mouth)to Honghai (Red Sea)Bay[J]. Tropic Oceanology, 1983,2(3):173-181
[5] 宋海斌, 郝天珧, 江为为 , 等. 南海地球场特征与基底断裂体系研究[J]. 地球物理学进展, 2002,17(1):24-33.
doi: 10.3969/j.issn.1004-2903.2002.01.003
Song H B, Hao T Y, Jiang W W , et al. Researches on geophysical field characteristics and basement fault system of South China Sea[J]. Progress in Geophysics, 2002,17(1):24-33.
[6] 郝天珧, 刘建华, 宋海斌 , 等. 华南及其相邻边缘海域一些重要断裂的地球物理证据[J]. 地球物理学进展, 2002,17(1):13-23.
doi: 10.3969/j.issn.1004-2903.2002.01.002
Hao T Y, Liu J H, Song H B , et al. Geophysical evidences of some important faults in South China and adjacent marginal seas region[J]. Progress in Geophysics. 2002,17(1):13-23.
[7] 郭令智, 施央申, 马瑞士 . 华南大地构造格架和地壳演化[M]//. 华南板块构造.北京: 地质出版社, 2001: 1-6.
Guo L Z, Shi Y S, Ma R S. Tectonic framework and crustal evolution in south China[M]// South China Plate Tectonics. Beijing: Geological Publishing House, 2001: 1-6.
[8] 张莉, 曾维军, 韦振权 , 等. 南海北部古构造格局对中、新生界发育的影响[J]. 地学前缘, 2014,21(6):254-262.
doi: 10.13745/j.esf.2014.06.025
Zhang L, Zeng W J, Wei Z Q , et al. The impact of northern South China Sea paletectonic framework on development of Mesozoic and Cenzoic[J]. Earth Science Frontiers, 2014,21(6):254-263
[9] 王霄飞, 余珊, 龚跃华 , 等. 华南北东向断裂在南海北部陆架的延伸[J]. 大地构造与成矿学, 2014,38(3):557-570.
Wang X F, Yu S, Gong Y H , et al. Extension of NE-trending faults in South China to northern South China Sea continental shelf[J]. Geotectonica et Metallogenia. 2014,38(3):557-570.
[10] 熊盛青, 李占奎, 丁燕云 , 等. 中国陆域断裂及岩浆岩构造图(1:250万)说明书[M]. 北京: 地质出版社, 2015.
Xiong S Q, Li Z K Ding Y Y, , et al. Description of China’s continental fault and magmatic structure (1:250 000) [M]. Beijing: Geological Publishing House, 2015.
[11] 邱元禧, 邱津松, 李建超 , 等. 广东莲花山断裂带中、新生代多期复合变形变质带的基本特征及其形成机制的探讨[R]. 中国地质科学院地质力学研究所, 1991: 93-105.
Qiu Y X, Qiu J S, Li J C , et al. Deformational and Metamorphic Features of Lianhuashan Fault Zone During Meso-Cenozoic Time and Mechanism of Their Formation[R]. Institute of Geomechanics,Chinese Academy of Geological Science, 1991: 93-105.
[12] 陈定国, 姚梅尹 . 莲花山断裂带南段的地震和构造[J]. 华南地震, 1984,4(1):42-51.
Chen D G, Yao M Y . Earthquakes and structures of the Lianhushan zone in the South[J]. South China Journal of Seismology, 1984,4(1):42-51.
[13] 齐信, 刘广宁, 黄长生 . 麻城—团风断裂带分段活动特征遥感调查[J]. 国土资源遥感, 2018,30(1):121-127.doi: 10.6046/gtzyyg.2018.01.17.
doi: 10.6046/gtzyyg.2018.01.17
Qi X, Liu G N, Huang C S . Remote sensing investigation for active characteristics of Macheng-Tuanfeng fault zone segmentation[J]. Remote Sensing for Land and Resources. 2018,30(1):121-127.doi: 10.6046/gtzyyg.2018.01.17.
[14] 付萍杰, 张景发, 王鑫 . 基于遥感和重力多源数据研究沂沭断裂带南段及周边断裂的交切关系[J]. 地震学报, 2017,39(5):708-724.
doi: 10.11939/jass.2017.05.007
Fu P J, Zhang J F, Wang X . Intersection relationship between south segment of Yishu fault zone and surrounding faults derived from remote sensing and gravity multisource data[J]. Acta Seismologica Sinica, 2017,39(5):708-724.
[15] 熊盛青, 李占奎, 丁燕云 , 等. 中国陆域磁场构造及岩浆岩特征[M]. 北京: 地质出版社, 2015: 156-187.
Xiong S Q, Li Z K, Ding Y Y , et al. Characteristics of China’s Terrestrial Magnetic Field Structure and Magmatic Rocks[M]. Beijing: Geological Publishing House, 2015: 156-187.
[16] 邢光福, 任建业, 高金耀 , 等. 中国火山岩分布图(1:250万)说明书[M]. 北京: 地质出版社, 2015: 29-33.
Xing G F, Ren J Y, Gao J Y , et al. Chinese Volcanic Rock Distribution Mapmanual (1:250 000)[M]. Beijing: Geological Publishing House, 2015: 29-33.
[17] 王德滋, 沈渭洲 . 中国东南部花岗岩成因与地壳演化[J]. 地学前缘, 2003,10(3):209-217.
doi: 10.3321/j.issn:1005-2321.2003.03.020
Wang D Z, Shen W Z . Genesis of granitoids and crustal evolution in Southeast China[J]. Earth Science Frontiers, 2003,10(3):209-217.
[18] 李三忠, 臧艺博, 王鹏程 , 等. 华南中生代构造转换和古太平洋俯冲启动[J]. 地学前缘, 2017,24(4):213-223.
doi: 10.13745/j.esf.yx.2017-4-13
Li S Z, Zang Y B, Wang P C , et al. Mesozoic tectonic transition in South China and initiation of Palaeo-Pacific subduction[J]. Earth Science Frontiers, 2017,24(4):213-225
[19] 程世秀, 李三忠, 索艳慧 , 等. 南海北部新生代盆地群构造特征及其成因[J]. 海洋地质与第四纪地质, 2012,32(6):79-90.
Cheng S X, Li S Z, Suo Y H , et al. Cenozoic tectonics and dynamics of basin groups of the northern South China Sea[J]. Marine Geology and Quaternary Geology, 2012,32(6):79-90.
[1] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[2] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[3] 王译著, 黄亮, 陈朋弟, 李文国, 余晓娜. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3): 89-96.
[4] 桑潇, 张成业, 李军, 朱守杰, 邢江河, 王金阳, 王兴娟, 李佳瑶, 杨颖. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3): 148-155.
[5] 卢麒, 秦军, 姚雪东, 吴艳兰, 朱皓辰. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 75-84.
[6] 胡苏李扬, 李辉, 顾延生, 黄咸雨, 张志麒, 汪迎春. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 国土资源遥感, 2021, 33(1): 221-230.
[7] 刘钊, 赵桐, 廖斐凡, 李帅, 李海洋. 基于语义分割网络的高分遥感影像城市建成区提取方法研究与对比分析[J]. 国土资源遥感, 2021, 33(1): 45-53.
[8] 郑智腾, 范海生, 王洁, 吴艳兰, 王彪, 黄腾杰. 改进型双支网络模型的遥感海水网箱养殖区智能提取方法[J]. 国土资源遥感, 2020, 32(4): 120-129.
[9] 孙珂. 融合超像元与峰值密度特征的遥感影像分类[J]. 国土资源遥感, 2020, 32(4): 41-45.
[10] 卫虹宇, 赵银娣, 董霁红. 基于改进RetinaNet的冷却塔目标检测[J]. 国土资源遥感, 2020, 32(4): 68-73.
[11] 李国庆, 黄菁华, 刘冠, 李洁, 翟博超, 杜盛. 基于Landsat8卫星影像土地利用景观破碎化研究——以陕西省延安麻塔流域为例[J]. 国土资源遥感, 2020, 32(3): 121-128.
[12] 李霄, 刘莹, 姚维岭, 杨金中, 李勇志, 汪洁. 基于ArcPy的违法矿山自动出图方法[J]. 国土资源遥感, 2020, 32(3): 247-251.
[13] 薛白, 付钰莹, 崔成玲, 宋艳茹, 赵世湖. 多重约束条件下的不同遥感影像匹配方法[J]. 国土资源遥感, 2020, 32(3): 49-54.
[14] 吴同, 彭玲, 胡媛. 基于SU-RetinaNet的高分辨率遥感影像非正规垃圾堆检测[J]. 国土资源遥感, 2020, 32(3): 90-97.
[15] 康晋洁, 戚浩平, 杨清华, 陈华. 道路通行障碍物遥感检测与通过性评价[J]. 国土资源遥感, 2020, 32(2): 94-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发