Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (3): 225-233    DOI: 10.6046/gtzyyg.2019.03.28
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于FC-DenseNet的低空航拍光学图像树种识别
林志玮1,2,3, 涂伟豪1, 黄嘉航1, 丁启禄1, 周铮雯1, 刘金福1,4
1. 福建农林大学计算机与信息学院,福州 350002
2. 福建农林大学林学院,福州 350002
3. 福建农林大学林学博士后流动站,福州 350002
4. 福建省高校生态与资源统计重点实验室,福州 350002
Tree species recognition of UAV aerial images based on FC-DenseNet
Zhiwei LIN1,2,3, Weihao TU1, Jiahang HUANG1, Qilu DING1, Zhengwen ZHOU1, Jinfu LIU1,4
1. College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
3. Forestry Post-Doctoral Station of Fujian Agriculture and Forestry University, Fuzhou 350002, China
4. Key Laboratory for Ecology and Resource Statistics of Fujian Province, Fuzhou 350002, China
全文: PDF(4977 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

使用低空遥感图像进行图像识别为森林调查和监测提供了新的技术契机。基于无人机低空航拍光学图像,以福建省安溪县崩岗区为研究区,建立FC-DenseNet模型进行树种识别。首先,利用Dense模块提取树种图像特征并增强深层网络信息,透过下采样模块降低图像维度,凸显图像的纹理特征和光谱特征; 然后,使用上采样模块还原预测图至原始图像大小,并融合浅层Dense模块信息的丰富特征; 最后,采用Softmax分类器实现像素分类,完成树种识别。结果显示,基于低空航拍光学图像,FC-DenseNet模型能够准确区分植被与非植被,定位其空间分布特征,其中,FC-DenseNet-103模型的二分类识别精度为92.1%,表明FC-DenseNet模型加深网络深度后具有较好的识别效果; 将植被与非植被细分为13类,FC-DenseNet-103模型的平均识别正确率达到75.67%。研究结果表明,基于低空航拍光学图像建立的FC-DenseNet模型具有较高的树种分类精度。由于低空航拍光学图像的成本较低,数据获取费用小,时间周期短,可便于森林资源调查和森林树种检测,为深度学习在树种识别领域的应用提供了新思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林志玮
涂伟豪
黄嘉航
丁启禄
周铮雯
刘金福
关键词 FC-DenseNet光学图像树种识别无人机深度神经网络    
Abstract

Image recognition based on low-altitude remote sensing imageries provides a new technological opportunity for forest survey and monitoring. In this study, the authors took the permanent gully in Benggang District, Anxi County, Fujian Province, as an instance and constructed the FC-DenseNet to identify tree species based on the low-altitude aerial optical image of UAV. First, the dense module in the FC-DenseNet model can extract the features of spectral images and enhance the information of the deep network, and the transition down block has an impact on reducing the image dimensions and highlighting the texture and spectral features; then, the transition up block can resize the scale of the predicted image to that of the original image, combined with information fusion of the shallow Dense module; finally, the Softmax classifier is used to achieve pixel-level classification so as to complete the tree species recognition. The results are as follows: ①The FC-DenseNet model based on the low-altitude aerial images not only could identify the difference between vegetation and non-vegetation but also could detect the their spatial distribution. The accuracy of the FC-DenseNet-103 model for vegetation and non-vegetation pixels is 92.1%, and the 103 layers’ network layer is the best network layer. ②Tree species are subdivided into 13 categories, and the accuracy of FC-DenseNet-103 model for dominant species reaches 79%.Some conclusions have been reached: The FC-DenseNet model based on low-altitude aerial optical images has a high tree classification accuracy. With the low cost of low-altitude aerial optical imagery, low data acquisition costs and short time cycles, forest resource surveys and forest species detection can be facilitated. The results obtained by the authors provide a new method in the field of tree recognition using deep learning.

Key wordsFC-DenseNet    optical image    tree species recognition    unmanned aerial vehicle    deep neural network
收稿日期: 2018-08-20      出版日期: 2019-08-30
:  X835TP79  
基金资助:中国博士后科学基金面上项目“基于DNN与植被特征关系的无人机图像解译植被信息研究”(2018M632565);海峡博士后交流资助计划项目“基于深度学习的智能湿地覆盖变化监测技术研究”和福建省自然科学基金项目“基于生物多样性的湿地保护区土地使用分区规划设计研究——以泉州湾河口湿地自然保护区为例”共同资助(2016J01718)
作者简介: 林志玮(1981-),男,博士,讲师,主要研究方向为图像处理、图形识别和机器学习。Email: cwlin@fafu.edu.cn.。
引用本文:   
林志玮, 涂伟豪, 黄嘉航, 丁启禄, 周铮雯, 刘金福. 基于FC-DenseNet的低空航拍光学图像树种识别[J]. 国土资源遥感, 2019, 31(3): 225-233.
Zhiwei LIN, Weihao TU, Jiahang HUANG, Qilu DING, Zhengwen ZHOU, Jinfu LIU. Tree species recognition of UAV aerial images based on FC-DenseNet. Remote Sensing for Land & Resources, 2019, 31(3): 225-233.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.03.28      或      https://www.gtzyyg.com/CN/Y2019/V31/I3/225
高度 A4白纸像
素点数
A4纸实际
面积/cm2
1像素点所
占面/cm2
20 m 1 273 623.7 0.490
Tab.1  航拍图像分辨率分析
Fig.1  20 m高度航拍图像解析度测试图
Fig.2  图像增强示意图
Fig.3  训练数据各类别像素点占比
Fig.4  FC-DenseNet模型框架
Fig.5  Dense模块示意图
Fig.6  感受野示意图
FC-DenseNet-56 FC-DenseNet-103
输入层 输入层
3×3卷积层 3×3卷积层
DB (4层) +TD DB (4层) +TD
DB (4层) +TD DB (5层) +TD
DB (4层) +TD DB (7层) +TD
DB (4层) +TD DB (10层) +TD
DB (4层) +TD DB (12层) +TD
DB (4层) DB (15层)
TU + DB (4层) TU + DB (12层)
TU + DB (4层) TU + DB (10层)
TU + DB (4层) TU + DB (7层)
TU + DB (4层) TU + DB (5层)
TU + DB (4层) TU + DB (4层)
1×1卷积层 1×1卷积层
Softmax Softmax
Tab.2  FC-DenseNet网络结构
Fig.7  模型训练loss值
Fig.8  不同模型分类结果示例
模型 PA MPA mIoU fIoU
FC-DenseNet-56 91.7 62.6 41.6 88.1
FC-DenseNet-103 92.1 63.7 44.9 88.7
Tab.3  不同模型的分类结果评估
Fig.9  FC-DenseNet-103优势树种的分类正确率
Fig.10  优势树种的分类效果
Fig.11  基于面向对象算法优势树种的分类精度
[1] Dandois J P, Ellis E C . Remote sensing of vegetation structure using computer vision[J]. Remote Sensing, 2010,2(4):1157-1176.
[2] 张园, 陶萍, 梁世祥 , 等. 无人机遥感在森林资源调查中的应用[J]. 西南林业大学学报, 2011,31(3):49-53.
Zhang Y, Tao P, Liang S X , et al. Research on application of UAV RS techniques in forest inventories[J]. Journal of Southwest Forestry College, 2011,31(3):49-53.
[3] 王伟 . 无人机影像森林信息提取与模型研建[D]. 北京:北京林业大学, 2015.
Wang W . Forest Information Extraction and Model Building[D]. Beijing:Beijing Forestry University, 2015.
[4] Zarco-Tejada P J, González-Dugo V, Berni J A J . Fluorescence,temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera[J]. Remote Sensing of Environment, 2012,117(1):322-337.
[5] Zarco-Tejada P J, Guillén-Climent M L, Hernández-Clemente R , et al. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle(UAV)[J]. Agricultural and Forest Meteorology, 2013,171(8):281-294.
[6] Zarco-Tejada P J, Morales A, Testi L , et al. Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance[J]. Remote Sensing of Environment, 2013,133(12):102-115.
[7] Zarco-Tejada P J, Catalina A, González M R , et al. Relationships between net photosynjournal and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery[J]. Remote Sensing of Environment, 2013,136(136):247-258.
[8] Duan S B, Li Z L, Wu H , et al. Inversion of the PROSAIL model to estimate leaf area index of maize,potato and sunflower fields from unmanned aerial vehicle hyperspectral data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,26(2):12-20.
[9] Calderón R , Navas-Cortés J A,Lucena C ,et al. High-resolution airborne hyperspectral and thermal imagery for early detection of verticillium wilt of olive using fluorescence,temperature and narrow-band spectral indices[J]. Remote Sensing of Environment, 2013,139(139):231-245.
[10] 周在明, 杨燕明, 陈本清 . 基于可见光波段无人机影像的入侵物种互花米草提取研究[J]. 亚热带资源与环境学报, 2017,12(2):90-92.
Zhou Z M, Yang Y M, Chen B Q . Study on the extraction of exotic species Spartina alterniflora from UAV visible images[J]. Journal of Subtropical Resources and Environment, 2017,12(2):90-92.
[11] 卫智熠 . 基于卷积神经网络的可见光图像农作物病虫害的检测[D]. 哈尔滨:哈尔滨工业大学, 2017
Wei Z Y . Plant Disease Detection Based on Visible Images and Convolutional Neural Network[D]. Harbin:Harbin Institute of Technology, 2017.
[12] Wang D L, Zhang X M, Liu Y Q . Recognition system of leaf images based on neuronal network[J]. Journal of Forestry Research, 2006,17(3):243-246.
[13] Wu Q F, Zhou C L, Wang C N . Feature extraction and automatic recognition of plant leaf using artificial neural network [C]//Proceeding of the 2nd International Conference on Computer Science and Education. 2007: 47-50.
[14] Backes A R, Casanova D, Bruno O M . A complex network-based approach for boundary shape analysis[J]. Pattern Recognition, 2009,42(1):54-67.
[15] Mallah C, Cope J, Orwell J . Plant leaf classification using probabilistic integration of shape,texture and margin features [C]//Signal Processing,Pattern Recognition and Applications, 2013,5(1):1-8.
[16] 丁雷龙, 李强子, 杜鑫 , 等. 基于无人机图像颜色指数的植被识别[J]. 国土资源遥感, 2016,28(1):78-86.doi: 10.6046/gtzyyg.2016.01.12.
doi: 10.6046/gtzyyg.2016.01.12
Ding L L, Li Q Z, Du X , et al. Vegetation extraction method based on color indices from UAV images[J]. Remote Sensing for Land and Resources, 2016,28(1):78-86.doi: 10.6046/gtzyyg.2016.01.12.
[17] 张华, 张改改, 吴睿 . 基于GF-1卫星数据的面向对象的民勤绿洲植被分类研究[J]. 干旱区地理, 2017,40(4):831-838.
Zhang H, Zhang G G, Wu R . Object-based vegetable classification based on GF-1 imagery in Minqin Oasis[J]. Arid Land Geography, 2017,40(4):831-838.
[18] 井然, 邓磊, 赵文吉 , 等. 基于可见光植被指数的面向对象湿地水生植被提取方法[J]. 应用生态学报, 2016,27(5):1427-1436.
Jing R, Deng L, Zhao W J , et al. Object-oriented aquatic vegetation extracting approach based on visible vegetation indices[J]. Chinese Journal of Applied Ecology, 2016,27(5):1427-1436.
[19] Krizhevsky A, Sutskever I, Hinton G E . ImageNet classification with deep convolutional neural networks [C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012,( 1):1097-1105.
[20] Wu X, He R, Sun Z N , et al. A light CNN for deep face representation with noisy labels[J]. IEEE Transactions on Information Forensics and Security, 2018,13(11):2884-2896.
[21] Collobert R, Weston J, Karlen M , et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011,12(1):2493-2537
[22] Dollár P, Wojek C, Schiele B , et al. Pedestrian detection:A benchmark [C]//Proceeding of 25th IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2009: 304-311
[23] 张帅, 淮永建 . 基于分层卷积深度学习系统的植物叶片识别研究[J]. 北京林业大学学报, 2016,38(9):108-115.
Zhang S, Huai Y J . Leaf image recognition based on layered convolutions neural network deep learning[J]. Journal of Beijing Forestry University, 2016,38(9):108-115.
[24] 陈扬洋 . 基于卷积神经网络的面向对象遥感影像分类方法研究[D]. 北京:中国地质大学, 2018.
Chen Y Y . OBIA Classification of Remote Sensing Image Based on Convolutional Neural Network[D]. Beijing:China University of Geosciences, 2018.
[25] Sladojevic S, Arsenovic M, Anderla A , et al. Deep neural networks based recognition of plant diseases by leaf image classification[J].Computational Intelligence and Neuroscience, 2016(6):1-11
[26] Brahimi M, Boukhalfa K, Moussaoui A . Deep learning for tomato diseases:Classification and symptoms visualization[J]. Applied Artificial Intelligence, 2017: 1-17
[27] Amara J, Bouaziz B, Algergawy A . A deep learning-based approach for banana leaf diseases classification[EB/OL]. .
[28] Long J, Shelhamer E, Darrell T . Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,39(4):640-651.
[29] Huang G, Liu Z, Weinberger K Q , et al. Densely connected convolutional networks [C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2017,1(2):2261-2269
[30] 林敬兰, 陈志明, 黄炎和 , 等. 安溪县崩岗侵蚀空间分布特征探讨[J]. 水土保持研究, 2009,16(6):63-68.
Lin J L, Chen Z M, Huang Y H , et al. Study on the characteristics of spatial distribution of slope disintegration erosion in Anxi County[J]. Research of Soil and Water Conservation, 2009,16(6):63-68.
[31] 吴征镒 . 中国植被[M]. 北京: 科学出版社, 1980: 16-19.
Wu Z Y. Chinese Vegetation[M]. Beijing: Science Press, 1980: 16-19.
[32] Ioffe S, Szegedy C . Batch normalization:Accelerating deep network training by reducing internal covariate shift [C]//International Conference on Machine Learning. 2015: 448-456.
[33] Jégou S, Drozdzal M, Vazquez D , et al. The one hundred layers tiramisu:Fully convolutional densenets for semantic segmentation [C]//Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).IEEE, 2017: 1175-1183.
[1] 吴芳, 李瑜, 金鼎坚, 李天祺, 郭华, 张琦洁. 无人机三维地障信息提取技术应用于航空物探飞行轨迹规划[J]. 自然资源遥感, 2022, 34(1): 286-292.
[2] 任超锋, 蒲禹池, 张福强. 顾及地理空间信息的无人机影像匹配像对提取方法[J]. 自然资源遥感, 2022, 34(1): 85-92.
[3] 张成业, 邢江河, 李军, 桑潇. 基于U-Net网络和GF-6影像的尾矿库空间范围识别[J]. 自然资源遥感, 2021, 33(4): 252-257.
[4] 臧传凯, 沈芳, 杨正东. 基于无人机高光谱遥感的河湖水环境探测[J]. 自然资源遥感, 2021, 33(3): 45-53.
[5] 李阳, 袁琳, 赵志远, 张晋磊, 王宪业, 张利权. 基于无人机低空遥感和现场调查的潮滩地形反演研究[J]. 自然资源遥感, 2021, 33(3): 80-88.
[6] 刘咏梅, 范鸿建, 盖星华, 刘建红, 王雷. 基于无人机高光谱影像的NDVI估算植被盖度精度分析[J]. 自然资源遥感, 2021, 33(3): 11-17.
[7] 白俊龙, 王章琼, 闫海涛. K-means聚类引导的无人机遥感图像阈值分类方法[J]. 自然资源遥感, 2021, 33(3): 114-120.
[8] 舒慧勤, 方俊永, 鲁鹏, 顾万发, 王潇, 张晓红, 刘学, 丁兰坡. 基于多源高分辨率数据的遗址空间考古精细识别研究[J]. 国土资源遥感, 2021, 33(2): 162-171.
[9] 毕卫华, 赵星涛, 杨化超, 卞和方, 张秋昭. 基于智能手机的无人机低空倾斜摄影测量系统及其应用研究[J]. 国土资源遥感, 2021, 33(2): 248-255.
[10] 熊育久, 赵少华, 鄢春华, 邱国玉, 孙华, 王艳林, 秦龙君. 城市绿地资源多尺度监测与评价方法探讨[J]. 国土资源遥感, 2021, 33(1): 54-62.
[11] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[12] 夏炎, 黄亮, 陈朋弟. 模糊超像素分割算法的无人机影像烟株精细提取[J]. 国土资源遥感, 2021, 33(1): 115-122.
[13] 王伟, 王新盛, 姚婵, 金添, 邬佳昱, 苏伟. 基于无人机影像的小麦植株密度估算方法研究[J]. 国土资源遥感, 2020, 32(4): 111-119.
[14] 秦其明, 陈晋, 张永光, 任华忠, 吴自华, 张赤山, 吴霖升, 刘见礼. 定量遥感若干前沿方向探讨[J]. 国土资源遥感, 2020, 32(4): 8-15.
[15] 陈朋弟, 黄亮, 夏炎, 余晓娜, 高霞霞. 基于Mask R-CNN的无人机影像路面交通标志检测与识别[J]. 国土资源遥感, 2020, 32(4): 61-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发