Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 220-227    DOI: 10.6046/gtzyyg.2020280
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
六盘山贫困区生长季植被覆盖变化及其对水热条件的响应
袁倩颖1(), 马彩虹1,2(), 文琦1,2, 李学梅3
1.宁夏大学资源环境学院,银川 750021
2.宁夏(中阿)旱区资源评价与环境调控重点实验室,银川 750021
3.重庆师范大学地理与旅游学院,重庆 401331
Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area
YUAN Qianying1(), MA Caihong1,2(), WEN Qi1,2, LI Xuemei3
1. College of Resources and Environment, Ningxia University, Yinchuan 750021, China
2. Key Laboratory of Resource Evaluation and Environmental Control in Ningxia (Central and Arab) Arid Areas, Yinchuan 750021, China
3. School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China
全文: PDF(4124 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用MODIS13,MODIS11和国家气象站点监测数据,以六盘山集中连片贫困区为研究区,采用最大值合成法、像元二分模型和偏相关分析等方法,分析了该区域生长季植被覆盖时空变化趋势,以及对地表温度和土壤湿度对植被生长的交互作用。结果表明: 2001—2018年间,六盘山贫困区生长季植被覆盖度由0.28提升到0.45,且呈现出由东南向西北递减的格局; 研究时段内表现为整体改善、局部退化的态势。其中,改善区占51.91%,无显著变化区占44.22%,退化区占3.87%; 植被生长与地表温度和土壤湿度的年内变化紧密相关,空间上呈现出协同正相关、协同负相关、反向相关3大类型,但以协同正相关占主导地位; 交互作用分析表明,土壤湿度对该区域植被生长的影响大于地表温度的影响,土壤水分条件是影响该区域植被生长的主导因子,土壤水分条件的改善对研究区生态环境建设与修复至关重要。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁倩颖
马彩虹
文琦
李学梅
关键词 植被覆盖变化生长季偏相关分析地表温度土壤湿度    
Abstract

Based on the MODIS13Q1,MODIS11Q2 data and national meteorological station monitoring data and using the methods of maximum value synthesis, the average two pixel model and partial correlation analysis, the authors analyzed the temporal and spatial variation trend of vegetation coverage in the growing season and the interaction of land surface temperature and soil moisture on vegetation growth. The results are as follows: ① From 2001 to 2018, the vegetation coverage of Liupanshan poverty-stricken area increased from 0.28 to 0.45, and showed a decreasing pattern from southeast to northwest. ② During the research period, there existed a trend of overall improvement and local degradation: the improved area accounted for 51.91%, the area without significant change accounted for 44.22%, and the degraded area accounted for 3.87%. ③ The growth of vegetation is closely related to the annual change of land surface temperature and soil moisture. There are three types of spatial correlation: positive correlation, negative correlation and reverse correlation, but the positive correlation is dominant. ④ The interaction analysis shows that the influence of soil moisture on vegetation growth is greater than that of land surface temperature. Soil moisture condition is the dominant factor affecting the vegetation growth in this area. The improvement of soil moisture condition is very important for the construction and restoration of ecological environment in the study area.

Key wordschange of vegetation cover    growing season    partial correlation analysis    land surface temperature    soil moisture
收稿日期: 2020-09-07      出版日期: 2021-07-21
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“宁夏六盘山贫困区农户生计转型的资源环境效应研究”(41761034);国家自然科学基金项目“宁夏六盘山贫困区‘三生’空间融合发展的动力机制及模式研究”(41961034);宁夏大学引进人才科研启动项目“六盘山贫困区资源环境压力图谱识别及预警”(BQD2016005)
通讯作者: 马彩虹
作者简介: 袁倩颖(1994-),女,硕士研究生,主要从事空间信息技术与分析研究。Email: yuanqy166@163.com
引用本文:   
袁倩颖, 马彩虹, 文琦, 李学梅. 六盘山贫困区生长季植被覆盖变化及其对水热条件的响应[J]. 国土资源遥感, 2021, 33(2): 220-227.
YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020280      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/220
Fig.1  研究区域
分类 覆盖度阈值/%
高覆盖 [60,100]
中覆盖 [45,60)
中低覆盖 [30,45)
低覆盖 [10,30)
荒漠 [0,10)
Tab.1  植被覆盖度分级标准
Fig.2  2001—2018年六盘山贫困区生长季植被覆盖度年变化
Fig.3  2018年六盘山贫困区生长季植被覆盖空间格局
Fig.4  六盘山贫困区生长季植被覆盖度变化
Fig.5  六盘片区生长季植被覆盖度及其LST、土壤湿度的标准化指数
Fig.6  2018年生长季植被覆盖度与LST和土壤湿度的偏相关性
Fig.7  2018年生长季LST与土壤湿度对植被覆盖度交互影响
类型 面积/
(106 hm2)
比例/
%
相关性
LST均值 土壤湿
度均值
LST正、土壤湿度正 7.14 43.04 0.47 0.59
LST正、土壤湿度负 2.45 14.74 0.51 -0.42
LST负、土壤湿度正 6.13 36.92 -0.45 0.71
LST负、土壤湿度负 0.88 5.28 -0.33 -0.4
Tab.2  2018年生长季LST、土壤湿度对植被生长相关性
[1] 王君, 杨晓梅, 隋立春, 等. 西安市1995—2016年植被覆盖度动态变化监测及景观格局分析[J]. 生态科学, 2019, 38(6):81-91.
Wang J, Yang X M, Sui L C, et al. Dynamic change monitoring and landscape pattern analysis of vegetation coverage in Xi’an City from 1995 to 2016[J]. Ecological Science, 2019, 38(6):81-91.
[2] 张亮, 丁明军, 张华敏, 等. 1982—2015年长江流域植被覆盖度时空变化分析[J]. 自然资源学报, 2018, 33(12):2084-2097.
Zhang L, Ding M J, Zhang H M, et al. Spatiotemporal variation of the vegetation coverage in Yangtze River basin during 1982—2015[J]. Journal of Natural Resources, 2018, 33(12):2084-2097.
[3] 阿多, 赵文吉, 宫兆宁, 等. 1981—2013华北平原气候时空变化及其对植被覆盖度的影响[J]. 生态学报, 2017, 37(2):576-592.
A D, Zhao W J, Gong Z N, et al. Temporal analysis of climate change and its relationship with vegetation cover on the north china plain from 1981 to 2013[J]. Acta Ecologica Sinica, 2017, 37(2):576-592.
[4] 金凯. 中国植被覆盖时空变化及其与气候和人类活动的关系[D]. 西安:西北农林科技大学, 2019.
Jin K. Spatio-temporal variations of vegetation cover and its relationships between climate change and human activities over China[D]. Xi’an:Northwest Agriculture and Forestry University, 2019.
[5] 张翀, 雷田旺, 宋佃星. 黄土高原植被覆盖与土壤湿度的时滞关联及时空特征分析[J]. 生态学报, 2018, 38(6):2128-2138.
Zhang C, Lei T W, Song D X. Analysis of temporal and spatial characteristics of time lag correlation between the vegetation cover and soil moisture in the Loess Plateau[J]. Acta Ecologica Sinica, 2018, 38(6):2128-2138.
[6] 翟雅倩, 张翀, 周旗, 等. 秦巴山区植被覆盖与土壤湿度时空变化特征及其相互关系[J]. 地球信息科学学报, 2018, 20(7):967-977.
doi: 10.12082/dqxxkx.2018.170597
Zhai Y Q, Zhang C, Zhou Q, et al. Spatio-temporal variation and interrelationship of vegetation cover and soil moisture in Qinling-Daba Mountains[J]. Journal of Geo-information Science, 2018, 20(7):967-977.
[7] Meir I N. Desert ecosystems:Environment and producers[J]. Annual Review of Ecology & Systematics, 1973, 4(1):25-51.
[8] Yang L, Wylie B, Tieszen L, et al. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U.S. northern and central Great Plains[J]. Remote Sensing of Environment, 1998, 65(1):25-37.
doi: 10.1016/S0034-4257(98)00012-1
[9] 赵建军. 阿帕拉契亚山植被动态变化及其对气候变化的响应研究[D]. 长春:东北师范大学, 2013.
Zhao J J. The study of vegetation dynamic and responses to climate change along the Appalachian trail corridor[D]. Changchun:Northeast Normal University, 2013.
[10] 高振东. 西辽河流域植被覆盖度时空演变规律及其影响因素研究[D]. 沈阳:沈阳农业大学, 2015.
Gao Z D. Study of spatial temporal evolution rule and influencial factors of vegetation coverage in West Liao River basin[D]. Shenyang:Shenyang Agricultural University, 2015.
[11] 贾文雄, 陈京华. 1982—2014年祁连山植被生长季NDVI变化及其对气候的响应[J]. 水土保持研究, 2018, 25(2):264-268.
Jia W X, Chen J H. Variations of NDVI and its response to climate change in the growing season of vegetation in Qilianshan mountains from 1982 to 2014[J]. Research of Soil and Water Conservation, 2018, 25(2):264-268.
[12] 罗敏, 古丽·加帕尔, 郭浩, 等. 2000—2013年塔里木河流域生长季NDVI时空变化特征及其影响因素分析[J]. 自然资源学报, 2017, 32(1):50-63.
Luo M, Jiapaer G, Guo H, et al. Spatial-temporal variation of growing-season NDVI and its responses to hydrothermal condition in the Tarim River basin from 2000 to 2013[J]. Journal of Natural Resources, 2017, 32(1):50-63.
[13] 杨延征, 赵鹏祥, 郝红科, 等. 基于SPOT-VGT NDVI的陕北植被覆盖时空变化[J]. 应用生态学报, 2012, 23(7):1897-1903.
Yang Y Z, Zhao P X, Hao H K, et al. Spatiotemporal variation of vegetation in northern Shaanxi of northwest China based on SPOT-VGT NDVI[J]. Chinese Journal of Applied Ecology, 2012, 23(7):1897-1903.
[14] 庞静, 杜自强, 张霄羽. 新疆地区植被对水热条件的时滞响应[J]. 中国农业资源与区划, 2015, 36(7):82-88.
Pang J, Du Z Q, Zhang X Y. Time -lagged response of vegetation to hydro-thermal factors in Xinjiang region[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2015, 36(7):82-88.
[15] 李梦云, 黄方, 陈龙胤. 吉林省西部地区NDVI对降水量和土壤湿度的敏感性分析[J]. 东北师大学报(自然科学版), 2013, 45(4):141-146.
Li M Y, Huang F, Chen L Y. Analysis of NDVI sensitivity to precipitation and soil moisture in western Jilin Province[J]. Journal of Northeast Normal University(Natural Science Edition), 2013, 45(4):141-146.
[16] 马雄伟, 赵庆志, 姚顽强. 黄土高原植被对气候变化的时滞响应及其时变特征[J]. 西安科技大学学报, 2020, 40(1):157-166.
Ma X W, Zhao Q Z, Yao W Q. Time lags of vegetation to climate change and temporal characteristics in Loess Plateau[J]. Journal of Xi’an University of Science and Technology, 2020, 40(1):157-166.
[17] Pang G J, Wang X J, Yang M X. Using the NDVI to identify variations in,and responses of,vegetation to climate change on the Tibetan Plateau from 1982 to 2012[J]. Quaternary International, 2016, 444,87-96.
doi: 10.1016/j.quaint.2016.08.038
[18] 何航, 张勃, 侯启, 等. 1982—2015年中国北方归一化植被指数(NDVI)变化特征及对气候变化的响应[J]. 生态与农村环境学报, 2020, 36(1):70-80.
He H, Zhang B, Hou Q, et al. Variation characteristic of NDVI and its response to climate change in northern China from 1982 to 2015[J]. Journal of Ecology and Rural Environment, 2020, 36(1):70-80.
[19] 黄悦悦, 杨东, 冯磊. 2000—2016年宁夏植被覆盖度的时空变化及其驱动力[J]. 生态学杂志, 2019, 38(8):2515-2523.
Huang Y Y, Yang D, Feng L. Spatiotemporal variation in vegetation coverage and its driving forces in Ningxia during 2000—2016[J]. Chinese Journal of Ecology, 2019, 38(8):2515-2523.
[20] 赵鸿雁, 陈英, 周翼, 等. 甘肃中东部植被生长季NDVI时空变化及其对气候因子的响应[J]. 干旱区地理, 2019, 42(6):1427-1435.
Zhao H Y, Chen Y, Zhou Y, et al. Spatiotemporal variation of NDVI in vegetation growing season and its responses to climatic factors in mid and eastern Gansu Province from 2008 to 2016[J]. Arid Land Geography, 2019, 42(6):1427-1435.
[21] 代子俊, 赵霞, 李冠稳, 等. 基于GIMMS NDVI 3g.v1的近34年青海省植被生长季NDVI时空变化特征[J]. 草业科学, 2018, 35(4):713-725.
Dai Z J, Zhao X, Li G W, et al. Spatial-temporal variations in NDVI in vegetation growing season in Qinghai based on GIMMS NDVI 3g.v1 in past 34 years[J]. Pratacultural Science, 2018, 35(4):713-725.
[22] 王海梅. 锡林郭勒地区气候变化规律与植被覆盖变化驱动机制研究[D]. 呼和浩特:内蒙古农业大学, 2009.
Wang H M. Spatial temporal change of climate and driving mechanisms of vegetation cover change in Xilinguole grasslands[D]. Huhhot:Inner Mongolia Agricultural University, 2009.
[23] 杨瑞瑞, 易桂花, 张廷斌, 等. 2000—2015年若尔盖地区植被覆盖度变化及气候因子驱动分析[J]. 草业科学, 2018, 35(12):2822-2835.
Yang R R, Yi G H, Zhang T B, et al. Vegetation coverage change and how it drives climatic factors in the Zoige region from 2000 to 2015[J]. Pratacultural Science, 2018, 35(12):2822-2835.
[24] 邓晨晖, 白红英, 高山, 等. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应[J]. 自然资源学报, 2018, 33(3):425-438.
Deng C H, Bai H Y, Gao S, et al. Spatial-temporal variation of the vegetation coverage in Qinling mountains and its dual response to climate change and human activities[J]. Journal of Natural Resources, 2018, 33(3):425-438.
[25] 何云玲, 李同艳, 熊巧利, 等. 2000—2016年云南地区植被覆盖时空变化及其对水热因子的响应[J]. 生态学报, 2018, 38(24):8813-8821.
He Y L, Li T Y, Xiong Q L, et al. Spatio-temporal patterns of vegetation coverage and response to hydrothermal factors in Yunnan Province,China[J]. Acta Ecologica Sinica, 2018, 38(24):8813-8821.
[26] 侯光雷, 张洪岩, 郭聃, 等. 长白山区植被生长季NDVI时空变化及其对气候因子敏感性[J]. 地理科学进展, 2012, 31(3):285-292.
doi: 10.11820/dlkxjz.2012.03.003
Hou G L, Zhang H Y, Guo D, et al. Spatial-temporal variation of NDVI in the growing season and its sensitivity to climatic factors in Changbai mountains[J]. Progress in Geography, 2012, 31(3):285-292.
[27] 王伟, 阿里木·赛买提, 吉力力·阿不都外力, 基于地理探测器模型的中亚NDVI时空变化特征及其驱动因子分析[J]. 国土资源遥感, 2019, 31(4):32-40.doi: 10.6046/gtzyyg.2019.04.05.
doi: 10.6046/gtzyyg.2019.04.05
Wang W, Samat A, Abuduwaili J. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Land and Resources, 2019, 31(4):32-40.doi: 10.6046/gtzyyg.2019.04.05.
doi: 10.6046/gtzyyg.2019.04.05
[28] 孟浩斌, 周启刚, 李明慧, 等. 基于MODIS像元尺度的三峡库区植被覆盖度变化的地形分布特征[J]. 长江流域资源与环境, 2020, 29(8):1790-1799.
Meng H B, Zhou Q G, Li M H, et al. Topographic distribution characteristics of vegetation cover change in the Three Gorges Reservoir area based on MODIS pixel scale[J]. Resources and Environment in the Yangtze Basin, 2020, 29(8):1790-1799.
[29] 张永, 杨自辉, 王立, 等. 石羊河中游生长季植被覆盖对气候的响应[J]. 干旱区研究, 2018, 35(3):662-668.
Zhang Y, Yang Z H, Wang L, et al. Response of vegetation coverage to climatic factors in the middle reaches of the Shiyang River in growing season[J]. Arid Zone Research, 2018, 35(3):662-668.
[30] 俱战省, 杨青森, 邢培茹. 1987—2015年嘉陵江源区植被覆盖度时空变化特征[J]. 地球与环境, 2020, 48(4):452-460.
Ju Z S, Yang Q S, Xing P R. Spatial-temporal dynamics of the fractional vegetation coverage in the headwaters of the Jialing River from 1987 to 2015[J]. Earth and Environment, 2020, 48(4):452-460.
[31] 孙红, 田昕, 闫敏, 等. 内蒙古大兴安岭根河植被覆盖度动态变化及影响因素的分析[J]. 遥感技术与应用, 2018, 33(6):1159-1169.
Sun H, Tian X, Yan M, et al. Analysis of dynamic changes of fractional vegetation coverage and influencing factors of the genhe in the Great Khingan of Inner Mongolia[J]. Remote Sensing Technology and Application, 2018, 33(6):1159-1169.
[32] 王静, 万红莲, 姚顺波. 生长季川陕不同地带植被覆盖对气候变化的时空响应[J]. 生态学报, 2019, 39(14):5218-5231.
Wang J, Wan H L, Yao S B. Spatial and temporal response of vegetation cover to climate change in different zones of Sichuan-Shaanxi area during growing season[J]. Acta Ecologica Sinica, 2019, 39(14):5218-5231.
[33] 徐嘉昕, 房世波, 张廷斌, 等. 2000—2016年三江源区植被生长季NDVI变化及其对气候因子的响应[J]. 国土资源遥感, 2020, 32(1):237-246.doi: 10.6046/gtzyyg.2020.01.32.
doi: 10.6046/gtzyyg.2020.01.32
Xu J X, Fang S B, Zhang T B, et al. NDVI changes and its correlation with climate factors of the Three River-Headwater region in growing seasons during 2000—2016[J]. Remote Sensing for Land and Resources, 2020, 32(1):237-246.doi: 10.6046/gtzyyg.2020.01.32.
doi: 10.6046/gtzyyg.2020.01.32
[1] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[2] 马俊俊, 王春磊, 黄晓红. 基于ASTER数据的地表温度遥感反演与产品检验——以黑河流域为例[J]. 自然资源遥感, 2023, 35(1): 198-204.
[3] 毛克彪, 严毅博, 曹萌萌, 袁紫晋, 覃志豪. 北美洲地表温度数据重建及时空变化分析[J]. 自然资源遥感, 2022, 34(4): 203-215.
[4] 伯英杰, 曾业隆, 李国庆, 曹兴文, 姚清秀. 浮岛光伏电场对地表温度空间分布特征的影响[J]. 自然资源遥感, 2022, 34(1): 158-168.
[5] 叶婉桐, 陈一鸿, 陆胤昊, 吴鹏海. 基于GEE的2000—2019年间升金湖湿地不同季节地表温度时空变化及地表类型响应[J]. 国土资源遥感, 2021, 33(2): 228-236.
[6] 王佳新, 萨楚拉, 毛克彪, 孟凡浩, 罗敏, 王牧兰. 蒙古高原土壤湿度时空变化格局及其对气候变化的响应[J]. 国土资源遥感, 2021, 33(1): 231-239.
[7] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[8] 周芳成, 唐世浩, 韩秀珍, 宋小宁, 曹广真. 云下遥感地表温度重构方法研究[J]. 国土资源遥感, 2021, 33(1): 78-85.
[9] 赵冰, 毛克彪, 蔡玉林, 孟祥金. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020, 32(2): 233-240.
[10] 曹琦, 师满江, 周亮, 王婷, 彭黎君, 郑仕雷. 山地城市裸地时空变化的热环境响应特征研究[J]. 国土资源遥感, 2019, 31(4): 190-198.
[11] 熊俊楠, 李伟, 程维明, 范春捆, 李进, 赵云亮. 高原地区LST空间分异特征及影响因素研究——以桑珠孜区为例[J]. 国土资源遥感, 2019, 31(2): 164-171.
[12] 吴迪, 陈健, 石满, 覃帮勇, 李盛阳. 基于Savitzky-Golay滤波算法的FY-2F地表温度产品时间序列重建[J]. 国土资源遥感, 2019, 31(2): 59-65.
[13] 吴莹, 姜苏麟, 王振会. 无线电频率干扰对MWRI资料反演地表温度的影响[J]. 国土资源遥感, 2018, 30(4): 90-96.
[14] 杨敏, 杨贵军, 王艳杰, 张勇峰, 张智宏, 孙晨红. 北京城市热岛效应时空变化遥感分析[J]. 国土资源遥感, 2018, 30(3): 213-223.
[15] 吴凯, 舒红, 聂磊, 焦振航. 基于Triple Collocation方法的土壤湿度误差分析[J]. 国土资源遥感, 2018, 30(3): 68-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发