Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 213-219    DOI: 10.6046/gtzyyg.2020206
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡
张腾1(), 谢帅2, 黄波3, 范景辉4(), 陈建平1, 童立强4
1.中国地质大学(北京)地球科学与资源学院,北京 100083
2.北京市交通委员会,北京 100073
3.河北省水文工程地质勘查院,石家庄 050021
4.中国自然资源航空物探遥感中心,北京 100083
Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data
ZHANG Teng1(), XIE Shuai2, HUANG Bo3, FAN Jinghui4(), CHEN Jianping1, TONG Liqiang4
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
2. Beijing Municipal Commission of Transport, Beijing 100073, China
3. Hebei Hydrological Engineering Geological Exploration Institute, Shijiazhuang 050021, China
4. China Aero Geophysical Survey and Remote Sensing Centre for Natural Resources, Beijing 100083, China
全文: PDF(6399 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

基于ALOS-2和Sentinel-1两种不同波长的遥感卫星影像,采用合成孔径雷达差分干涉测量技术(differential interferometric synthetic aperture Radar,DInSAR)两轨法和Stacking方法圈定四川省茂县中部正在发生地表形变的活动滑坡并分析了滑坡的运动特征。首先,针对ALOS-2卫星时间基线长、影像数据量少的问题,采用两轨法DInSAR进行滑坡形变探测; 其次,基于短时间基线的多景Sentinel-1数据,采用Stacking方法探测滑坡形变; 最后,综合分析两种数据集的形变速率结果,圈定四川茂县中部的潜在滑坡区域。结果表明,茂县白布村等地的疑似活动滑坡具有明显地表形变,雷达视线向形变速率最大绝对量达到200 mm/a; 结合光学影像特征和已有历史调查资料,圈定了8个活动滑坡,两种数据的探测结果在其中7个活动滑坡处的空间分布能互相对应,对6个活动滑坡进行了野外调查,发现了地面变形迹象。结果表明,采用少量长波段ALOS-2影像和DInSAR两轨法,能够在具有一定植被覆盖度的山区探测到较为明显的滑坡地表形变; 应用C波段的Sentinel-1影像时,则需要积累连续的多景数据,并应用时序分析方法,此时其探测效果比采用ALOS-2影像的两轨法效果更佳。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张腾
谢帅
黄波
范景辉
陈建平
童立强
关键词 茂县滑坡DInSARStackingALOS-2Sentinel-1    
Abstract

Based on satellite images of two different wavelengths acquired by ALOS-2 and Sentinel-1, the authors used DInSAR two-track method and stacking technology to analyze and delineate the active landslide that is undergoing surface deformation in the central part of Maoxian County, Sichuan Province. First, in view of the long time baseline of the ALOS-2 satellite and the small amount of image data, the two-track DInSAR method was used to detect landslide deformation. Secondly, on the basis of the short-time baseline multi-scene Sentinel-1 data, the stacking technology was used to detect landslide deformation. Finally, comprehensive analysis of the deformation rate results of the two data sets was conducted, and the potential landslide area in the middle of Maoxian County of Sichuan was delineated. The results show that the suspected active landslides in Baibu Village of Maoxian County and other places have obvious surface deformation, and the maximum absolute amount of radar line-of-sight deformation rate reaches 200 mm/a; combined with optical image characteristics and existing historical survey data, 8 active landslides were delineated, and the exploration result of two kinds of data shows that the detection results of the data can correspond to each other in the spatial distribution of 7 active landslides. Field surveys were conducted on 6 active landslides, and signs of ground deformation were found. The work in this paper shows that using a small number of long-band ALOS-2 images and the DInSAR two-track method can detect more obvious landslide surface deformation in mountainous areas with certain vegetation coverage; when C-band Sentinel-1 images are applied, accumulation of continuous multi-scene data is required; in addition, by applying time series analysis method, the detection effect is better than the two-track method using ALOS-2 images.

Key wordsMaoxian County landslides    DInSAR    Stacking    ALOS-2    Sentinel-1
收稿日期: 2020-07-06      出版日期: 2021-07-21
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“青藏高原露天煤矿排土场地形-土壤-植被响应机理及地貌重塑研究”(41977415);中国地质调查局项目“全球冰川及荒漠化遥感地质调查”(DD20190515);中欧科技合作“龙计划”五期项目“Integration of multi-source Remote Sensing Data to detect and monitoring large and rapid landslides and use of Artificial Intelligence for Cultural Heritage preservation”(56796);JAXA EO-RA2项目“Application of Radar Remote Sensing Technology in Resource Environment Monitoring”(P3073002)
通讯作者: 范景辉
作者简介: 张 腾(1996-),女,硕士研究生,主要从事InSAR技术应用研究。Email: 1345872622@qq.com
引用本文:   
张腾, 谢帅, 黄波, 范景辉, 陈建平, 童立强. 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡[J]. 国土资源遥感, 2021, 33(2): 213-219.
ZHANG Teng, XIE Shuai, HUANG Bo, FAN Jinghui, CHEN Jianping, TONG Liqiang. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data. Remote Sensing for Land & Resources, 2021, 33(2): 213-219.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020206      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/213
Fig.1  研究区地形及ALOS-2、Sentinel-1数据覆盖范围
获取卫星 数据级别 成像日期 轨道方向 入射角/(°) 空间分辨率(距离向×方位向) 波段类型
ALOS-2 SM2 2016.03.06 升轨 33.2 6 m×4.3 m L波段(23.5 cm 1.2 GHz)
2016.03.20 升轨 33.2
2017.07.09 升轨 33.2
SM3 2016.12.11 升轨 32.9 9.1 m×5.3 m L波段(23.5 cm 1.5 GHz)
2017.07.23 升轨 32.9
Tab.1  ALOS-2 PALSAR-2数据信息统计
获取卫星 影像
数/景
时间跨度 轨道
方向
入射
角/(°)
空间分
辨率(距
离向×
方位向)
波段类型
Sentinel-1 45 2015.11.26—
2017.12.11
升轨 39.2 5 m×
20 m
C波段
(5.6 cm
5.4 GHz)
Tab.2  Sentinel-1 数据信息
Fig.2  数据处理流程图
Fig.3  研究区差分干涉图
Fig.4  ALOS-2和Sentinel-1探测出的活动滑坡和形变结果
Fig.5  活动滑坡a处和e处的野外调查实照
[1] 邵崇建, 李芃宇, 李勇, 等. 茂县滑坡的滑动机制与震后滑坡形成的地质条件[J]. 成都理工大学学报(自然科学版), 2017, 44(4):385-402.
Shao C J, Li F Y, Li Y, et al. Sliding mechanism of Maoxian landslide and geological condition analysis of formation of post-earthquake landslide[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2017, 44(4):385-402.
[2] 范景辉. 三峡库区范家坪滑坡地表形变InSAR监测与综合分析[J]. 地质通报, 2017, 36(9):1665-1673.
Fan J H. InSAR monitoring and synthetic analysis of the surface deformation of Fanjiaping landslide in the Three Gorges Reservoir area[J]. Geological Bulletin of China, 2017, 36(9):1665-1673.
[3] Liu G, Guo H, Perski Z, et al. Landslide movement monitoring with ALOS-2 SAR data[J]. IOP Conference Series Earth and Environmental Science, 2019, 227:062015.
doi: 10.1088/1755-1315/227/6/062015
[4] 王振林, 廖明生, 张路, 等. 基于时序Sentinel-1数据的锦屏水电站左岸边坡形变探测与特征分析[J]. 国土资源遥感, 2019, 31(2):204-209.doi: 10.6046/gtzyyg.2019.02.28.
doi: 10.6046/gtzyyg.2019.02.28
Wang Z L, Liao M S, Zhang L, et al. Detecting and characterizing deformations of the left bank slope near the Jinping hydropower station with time series Sentinel-1 data[J]. Remote Sensing for Land and Resources, 2019, 31(2):204-209.doi: 10.6046/gtzyyg.2019.02.28.
doi: 10.6046/gtzyyg.2019.02.28
[5] Intrieri E, Raspini F, Fumagalli A, et al. The Maoxian landslide as seen from space:Detecting precursors of failure with Sentinel-1 data[J]. Landslides, 2017, 15(3):1-10.
[6] 高思远, 黄诗峰, 孙亚勇, 等. Sentinel-1 SAR数据在四川茂县山体滑坡灾害监测中的应用研究[J]. 中国水利水电科学研究院学报, 2019, 17(2):132-138.
Gao S Y, Huang S F, Sun Y Y, et al. Research on the application of Sentinel-1 SAR data in monitoring of landslide disaster in Maoxian County Sichuan[J]. Journal of China Institute of Water Resources and Hydropower Research, 2019, 17(2):132-138.
[7] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11):2612-2628.
Xu Q, Li W L, Dong X J, et al. The Xinmocun landslide on June 24,2017 in Maoxian,Sichuan:Characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11):2612-2628.
[8] 温铭生, 陈红旗, 张鸣之, 等. 四川茂县“6·24”特大滑坡特征与成因机制分析[J]. 中国地质灾害与防治学报, 2017, 28(3):1-7.
Wen M S, Chen H Q, Zhang M Z, et al. Characteristics and formation mechanism analysis of the “6·24” catastrophic landslide of the June 24 of 2017,at Maoxian,Sichuan[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(3):1-7.
[9] Liang C, Liu Z, Fielding E J, et al. InSAR time series analysis of L-band wide-swath SAR data acquired by ALOS-2[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4492-4506.
doi: 10.1109/TGRS.2018.2821150
[10] Dong Y, Chen W, Chang H, et al. Assessment of orthoimage and DEM derived from ZY-3 stereo image in Northeastern China[J]. Survey Review, 2016, 48(349):247-257.
doi: 10.1179/1752270615Y.0000000027
[11] 李健强, 韩海辉, 高婷, 等. 资源三号卫星在地质灾害调查评价中的应用——以宝鸡黄土区为例[J]. 国土资源遥感, 2017, 29(s1):73-80.doi: 10.6046/gtzyyg.2017.s1.12.
doi: 10.6046/gtzyyg.2017.s1.12
Li J Q, Han H H, Gao T, et al. The application of ZY-3 satellite to geological hazards survey and evaluation:A case study of Baoji loess area[J]. Remote Sensing For Land and Resources, 2017, 29(s1):73-80.doi: 10.6046/gtzyyg.2017.s1.12.
doi: 10.6046/gtzyyg.2017.s1.12
[12] 张晓博, 赵学胜, 葛大庆, 等. 基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降[J]. 国土资源遥感, 2018, 30(4):200-205.doi: 10.6046/gtzyyg.2018.04.30.
doi: 10.6046/gtzyyg.2018.04.30
Zhang X B, Zhao X S, Ge D Q, et al. Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique[J]Remote Sensing for Land and Resources, 2018, 30(4):200-205.doi: 10.6046/gtzyyg.2018.04.30.
doi: 10.6046/gtzyyg.2018.04.30
[13] 郑万基, 孙倩, 刘小鸽. 利用Sentinel-1A数据和TCP-InSAR技术监测金沙江中游兴培当至草可都段滑坡[J]. 测绘工程, 2018, 27(9):51-58,63.
Zheng W J, Sun Q, Liu X G. Monitoring landslide movements in Xingpeidang-Caokedu section of middle Jinsha River with TCP-InSAR and Sentinel-1 data1[J]. Engineering of Surveying and Mapping, 2018, 27(9):51-58,63.
[1] 何彬方, 姚筠, 冯妍, 刘惠敏, 戴娟. 基于Sentinel-1A的安徽省2020年梅雨期洪水淹没监测[J]. 自然资源遥感, 2023, 35(1): 140-147.
[2] 张昊, 高小红, 史飞飞, 李润祥. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4): 144-154.
[3] 王宇, 周忠发, 王玲玉, 骆剑承, 黄登红, 张文辉. 基于Sentinel-1的喀斯特高原山区种植结构空间分异研究[J]. 自然资源遥感, 2022, 34(4): 155-165.
[4] 张淑, 周忠发, 王玲玉, 陈全, 骆剑承, 赵馨. 多时相SAR的喀斯特山区耕地表层土壤水分反演[J]. 自然资源遥感, 2022, 34(3): 154-163.
[5] 查东平, 蔡海生, 张学玲, 何庆港. 基于多时相Sentinel-1水稻种植范围提取[J]. 自然资源遥感, 2022, 34(3): 184-195.
[6] 杨显华, 魏鹏, 吕军, 韩磊, 石浩林, 刘智. 基于多源遥感的采空塌陷识别技术应用研究[J]. 自然资源遥感, 2022, 34(2): 162-167.
[7] 韦嫦, 付波霖, 覃娇玲, 王雅南, 陈智瀚, 刘兵. 基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测[J]. 自然资源遥感, 2022, 34(2): 251-260.
[8] 史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4): 55-63.
[9] 李渊, 毋琳, 戚雯雯, 郭拯危, 李宁. 基于改进OGMRF-RC模型的SAR图像分类方法[J]. 自然资源遥感, 2021, 33(4): 98-104.
[10] 刘春亭, 冯权泷, 金鼎坚, 史同广, 刘建涛, 朱明水. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3): 253-261.
[11] 孙超, 陈振杰, 王贝贝. 基于SAR时间序列的建设用地扩展监测——以常州市新北区为例[J]. 国土资源遥感, 2020, 32(4): 154-162.
[12] 刘警鉴, 李洪忠, 华璀, 孙毓蔓, 陈劲松, 韩宇. 基于Sentinel-1A数据的临高县早稻面积提取[J]. 国土资源遥感, 2020, 32(1): 191-199.
[13] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
[14] 张晓博, 赵学胜, 葛大庆, 刘斌, 张玲, 李曼, 王艳. 基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降[J]. 国土资源遥感, 2018, 30(4): 200-205.
[15] 陈继伟, 曾琪明, 焦健, 赵斌臣. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例[J]. 国土资源遥感, 2017, 29(4): 82-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发