Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 113-121    DOI: 10.6046/zrzyyg.2021402
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于RandLA-Net的机载激光雷达点云城市建筑物变化检测
孟琮棠1(), 赵银娣1(), 韩文泉2, 何晨阳1, 陈锡秋2
1.中国矿业大学环境与测绘学院,徐州 221116
2.南京市测绘勘察研究院股份有限公司,南京 210019
RandLA-Net-based detection of urban building change using airborne LiDAR point clouds
MENG Congtang1(), ZHAO Yindi1(), HAN Wenquan2, HE Chenyang1, CHEN Xiqiu2
1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
2. Nanjing Insititute of Surveying, Mapping and Geotechnical Investigation Co. Ltd., Nanjing 210019, China
全文: PDF(9633 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用遥感手段对城市建筑物进行变化检测可以快速准确地获取建筑物覆盖的变化信息,但是单纯基于影像数据难以快速、准确地进行三维变化检测,且传统基于点云的方法自动化程度低、精度差。针对这些问题,文章使用机载激光雷达点云数据,引入RandLA-Net的点云语义分割方法,提高变化检测的精度与自动化程度,同时通过点云投影的方式,克服了点云无序性导致的2期数据间无法差分的问题。标准RandLA-Net算法使用点的位置与颜色信息作为特征,并主要用于街景级点云的语义分割。该研究则使用城市大尺度机载点云数据,结合固有的反射强度与影像赋予点云的光谱信息,探究不同特征信息对结果精度的影响。同时,实验中发现除点云强度和光谱等特征外,点本身的坐标信息同样重要,转化为相对坐标使结果精度提升明显。实验结果表明,使用RandLA-Net网络对建筑物提取与变化检测获得的结果明显优于传统方法,且验证了使用深度学习方法处理激光雷达数据进行建筑物提取与变化检测的可行性,可以实现可靠的建筑物三维变化检测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟琮棠
赵银娣
韩文泉
何晨阳
陈锡秋
关键词 机载激光雷达点云变化检测三维语义分割    
Abstract

Using remote sensing to detect changes in urban buildings can obtain the change information of building coverage quickly and accurately. However, it is difficult to detect 3D changes quickly and accurately based on image data alone. Moreover, conventional point cloud-based methods have low automation and poor precision. To address these problems, this study used the airborne LiDAR point clouds and employed the RandLA-Net’s point cloud semantic segmentation method to improve the accuracy and automation of change detection. Meanwhile, the failure in differentiating two-period data due to point cloud disorder was overcome through point cloud projection. The standard RandLA-Net method, with the location and color information of points as features, is mainly used for semantic segmentation of street-level point clouds. In this study, urban large-scale airborne point clouds combined with the inherent reflection intensity and the spectral information of point clouds given by images were used to explore the influence of different feature information on the precision of the results. Furthermore, it was found that in addition to the point cloud intensity and spectral features, the coordinate information of points is equally important and can be converted into relative coordinates to significantly improve the result precision. The experimental findings show that the results obtained using RandLA-Net are significantly better than those using conventional methods for building extraction and change detection. This study also verified the feasibility of using deep learning methods to process LiDAR data for building extraction and change detection, which can realize reliable 3D building change detection.

Key wordsairborne LiDAR    point cloud    change detection    3D semantic segmentation
收稿日期: 2021-11-22      出版日期: 2022-12-27
ZTFLH:  TP79  
基金资助:南京市测绘勘察研究院股份有限公司科研项目“基于点云与影像的城市典型地物变化检测关键技术研究”(H7P210062);自然资源部退化及未利用土地整治工程重点实验室开放基金课题(SXDJ2019-4)
通讯作者: 赵银娣(1980-),女,副教授,博士,研究方向为遥感数据处理、模式识别。Email: zhaoyd@cumt.edu.cn
作者简介: 孟琮棠(1997-),男,硕士研究生,研究方向为遥感数据处理。Email: 07152845@cumt.edu.cn
引用本文:   
孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021402      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/113
Fig.1  LiDAR点云数据示例
Fig.2  采样后点云结构
Fig.3  点云数据集示例
Fig.4  RandLA-Net整体结构图
Fig.5  LFA模块结构
Tab.1  2017年点云建筑物提取结果
Tab.2  2019年点云建筑物提取结果
Fig.6  低矮建筑物与树木区分
年份 方法 准确率/% 精准率/% 召回率/% F1分数 Kappa系数
2017年 RandLA-Net IRGB C 98.52 88.21 97.45 92.60 0.917 8
RandLA-Net RGB C 98.49 88.83 96.45 92.48 0.916 4
RandLA-Net I C 98.32 88.15 95.45 91.65 0.907 2
RandLA-Net I 97.27 92.59 83.23 87.66 0.861 3
ENVI LiDAR 91.91 24.24 94.24 38.39 0.358 1
TerraScan 95.76 73.58 83.96 78.43 0.760 9
DSM高程阈值法 93.55 88.61 63.85 74.22 0.706 4
2019年 RandLA-Net IRGB C 98.54 86.10 97.69 91.53 0.907 3
RandLA-Net RGB C 98.94 90.30 97.93 93.96 0.933 7
RandLA-Net I C 98.59 86.67 97.72 91.86 0.910 9
RandLA-Net I 94.26 38.24 97.94 55.00 0.525 7
ENVI LiDAR 97.93 86.17 90.76 88.41 0.872 7
TerraScan 94.83 72.68 71.46 72.06 0.692 2
DSM高程阈值法 97.29 77.23 91.93 83.94 0.824 7
Tab.3  建筑物提取方法精度对比
Tab.4  变化检测结果
方法 变化
类型
准确
率/%
精准
率/%
召回
率/%
F1
分数
Kappa
系数
RandLA-
Net IRBG C
增高 97.22 70.40 97.65 81.57 0.856 6
降低 87.23 99.71 93.05
新建 87.42 92.07 89.68
拆除 77.74 79.05 78.39
RandLA-
Net RBG C
增高 97.61 82.23 97.71 89.30 0.876 9
降低 88.22 98.52 93.09
新建 87.73 93.24 90.40
拆除 78.91 84.54 81.63
RandLA-
Net I C
增高 97.10 85.62 98.94 91.80 0.849 2
降低 91.63 99.54 95.42
新建 77.33 90.63 83.45
拆除 78.20 82.85 80.46
RandLA-
Net I
增高 91.77 31.10 96.60 47.05 0.606 0
降低 36.72 100.00 53.72
新建 38.85 94.24 55.02
拆除 86.21 42.94 57.33
ENVI
LiDAR
增高 90.46 11.05 64.22 18.86 0.502 4
降低 9.61 69.44 16.88
新建 79.55 35.58 49.17
拆除 30.27 88.06 45.05
TerraScan 增高 91.67 33.31 80.18 47.07 0.628 9
降低 21.82 73.95 33.70
新建 67.19 36.26 47.10
拆除 85.90 65.65 74.42
DSM高程阈值法 增高 91.65 84.08 88.39 86.18 0.642 4
降低 71.99 100.00 83.71
新建 63.90 81.50 71.63
拆除 83.83 41.62 55.62
Tab.5  建筑物变化检测结果精度对比
[1] Murakami H, Nakagawa K, Hasegawa H, et al. Change detection of buildings using an airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2):148-152.
doi: 10.1016/S0924-2716(99)00006-4
[2] Vu T, Matsuoka M, Yamazaki F. LiDAR-based change detection of buildings in dense urban areas[C]// IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2004:3413-3416.
[3] Pang S, Hu X, Wang Z, et al. Object-based analysis of airborne LiDAR data for building change detection[J]. Remote Sensing, 2014, 6(11):10733-10749.
doi: 10.3390/rs61110733
[4] Pirasteh S, Rashidi P, Rastiveis H, et al. Developing an algorithm for buildings extraction and determining changes from airborne LiDAR,and comparing with R-CNN method from drone images[J]. Remote Sensing, 2019, 11(11):1272.
doi: 10.3390/rs11111272
[5] 曾静静, 张晓刚, 王刚. 基于LiDAR点云的城区地表变化检测[J]. 城市勘测, 2021(2):92-95.
Zeng J J, Zhang X G, Wang G. Urban land surface change detection based on LiDAR point cloud[J]. Urban Geotechnical Investigation and Surveying, 2021(2):92-95.
[6] Matikainen L, Hyyppä J, Ahokas E, et al. Automatic detection of buildings and changes in buildings for updating of maps[J]. Remote Sensing, 2010, 2(5):1217-1248.
doi: 10.3390/rs2051217
[7] Malpica J A, Alonso M C. Urban changes with satellite imagery and LiDAR data[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Science, 2010, 38(8):853-858.
[8] Du S, Zhang Y, Qin R, et al. Building change detection using old aerial images and new LiDAR data[J]. Remote Sensing, 2016, 8(12):1030.
doi: 10.3390/rs8121030
[9] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717
[10] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv, 2014(2015-04-10)[2022-10/15]. https://arxiv.org/abs/1409.1556 .
[11] Badrinarayanan V, Kendall A, Cipolla R. Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[12] He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
[13] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015:234-241.
[14] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
[15] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.
[16] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2):38-43.doi:10.6046/gtzyyg.2019.02.06.
doi: 10.6046/gtzyyg.2019.02.06
Xie Q F, Yao G Q, Zhang M. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land and Resources, 2019, 31(2):38-43.doi:10.6046/gtzyyg.2019.02.06.
doi: 10.6046/gtzyyg.2019.02.06
[17] 武宇, 张俊, 李屹旭, 等. 基于改进U-Net的建筑物集群识别研究[J]. 国土资源遥感, 2021, 33(2):48-54.doi:10.6046/gtzyyg.2020278.
doi: 10.6046/gtzyyg.2020278
Wu Y, Zhang J, Li Y X, et al. Research on building cluster identification based on improved U-Net[J]. Remote Sensing for Land and Resources, 2021, 33(2):48-54.doi:10.6046/gtzyyg.2020278.
doi: 10.6046/gtzyyg.2020278
[18] 卢麒, 秦军, 姚雪东, 等. 基于多层次感知网络的GF-2遥感影像建筑物提取[J]. 国土资源遥感, 2021, 33(2):75-84.doi:10.6046/gtzyyg.2020289.
doi: 10.6046/gtzyyg.2020289
Lu Q, Qin J, Yao X D, et al. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land and Resources, 2021, 33(2):75-84.doi:10.6046/gtzyyg.2020289.
doi: 10.6046/gtzyyg.2020289
[19] 刘文雅, 岳安志, 季钰, 等. 基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取[J]. 国土资源遥感, 2020, 32(2):120-129.doi:10.6046/gtzyyg.2020.02.16.
doi: 10.6046/gtzyyg.2020.02.16
Liu W Y, Yue A Z, Ji Y, et al. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model[J]. Remote Sensing for Land and Resources, 2020, 32(2):120-129.doi:10.6046/gtzyyg.2020.02.16.
doi: 10.6046/gtzyyg.2020.02.16
[20] 安健健, 孟庆岩, 胡蝶, 等. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2):93-99.doi:10.6046/gtzyyg.2020184.
doi: 10.6046/gtzyyg.2020184
An J J, Meng Q Y, Hu D, et al. The detection and determination of the working state of cooling tower in the thermal power plant based on Faster R-CNN[J]. Remote Sensing for Land and Resources, 2021, 33(2):93-99.doi:10.6046/gtzyyg.2020184.
doi: 10.6046/gtzyyg.2020184
[21] Guo Y, Wang H, Hu Q, et al. Deep learning for 3D point clouds:A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12):4338-4364.
doi: 10.1109/TPAMI.2020.3005434
[22] Qi C R, Su H, Mo K, et al. Pointnet:Deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:652-660.
[23] Wu B, Wan A, Yue X, et al. Squeezeseg:Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018:1887-1893.
[24] Thomas H, Qi C R, Deschaud J E, et al. Kpconv:Flexible and deformable convolution for point clouds[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:6411-6420.
[25] Hu Q, Yang B, Xie L, et al. RandLA-Net:Efficient semantic segmentation of large-scale point clouds[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:11108-11117.
[26] Hackel T, Savinov N, Ladicky L, et al. Semantic3d.net:A new large-scale point cloud classification benchmark[J/OL]. arXiv, 2017(2017-04-12)[2022-10/15]. https://arxiv.org/abs/1704.03847 .
[1] 王丽英, 马旭伟, 有泽, 王世超, CAMARA Mahamadou. 基于多元GMM的机载多光谱LiDAR点云空谱联合分类[J]. 自然资源遥感, 2023, 35(3): 88-96.
[2] 崔子伟, 徐文学, 刘焱雄, 郭亚栋, 孟祥谦, 蒋正坤. 机载激光测深数据获取及处理技术现状[J]. 自然资源遥感, 2023, 35(3): 1-9.
[3] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[4] 闫涵, 张毅. 利用GF-6影像结合国土“三调”开展西部地区县域自然资源调查[J]. 自然资源遥感, 2023, 35(2): 277-286.
[5] 张田, 周忠发, 王玲玉, 赵馨, 张文辉, 张淑, 王宇. 基于无人机点云数据土壤粗糙度测量方法[J]. 自然资源遥感, 2023, 35(1): 115-122.
[6] 贺鹏, 颜瑜严, 文艳, 马志刚, 焦其松, 郭兆成, 莫悠. 机载LiDAR技术在缓倾地层滑坡及其拉裂槽识别中的应用[J]. 自然资源遥感, 2022, 34(4): 307-316.
[7] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[8] 吴芳, 李瑜, 金鼎坚, 李天祺, 郭华, 张琦洁. 无人机三维地障信息提取技术应用于航空物探飞行轨迹规划[J]. 自然资源遥感, 2022, 34(1): 286-292.
[9] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[10] 潘建平, 徐永杰, 李明明, 胡勇, 王春晓. 结合相关系数和特征分析的植被区域自动变化检测研发[J]. 自然资源遥感, 2022, 34(1): 67-75.
[11] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
[12] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[13] 王译著, 黄亮, 陈朋弟, 李文国, 余晓娜. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3): 89-96.
[14] 徐锐, 余小于, 张驰, 杨瑨, 黄宇, 潘俊. 融合Unet网络和IR-MAD的建筑物变化检测方法[J]. 国土资源遥感, 2020, 32(4): 90-96.
[15] 刁明光, 刘文静, 李静, 刘芳, 王彦佐. 矿山遥感监测矢量成果数据动态变化检测方法[J]. 国土资源遥感, 2020, 32(3): 240-246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发