Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 105-112    DOI: 10.6046/zrzyyg.2021351
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于时空谱特征的遥感影像时间序列变化检测
秦乐1(), 何鹏2, 马玉忠3, 刘建强4, 杨彬1()
1.湖南大学电气与信息工程学院,长沙 410082
2.南华大学机械工程学院,衡阳 421000
3.山东省国土测绘院,济南 250014
4.国家卫星海洋应用中心,北京 100081
Change detection of satellite time series images based on spatial-temporal-spectral features
QIN Le1(), HE Peng2, MA Yuzhong3, LIU Jianqiang4, YANG Bin1()
1. College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
2. School of Mechanical Engineering, University of South China, Hengyang 421000, China
3. Shandong Provincial Institute of Land Surveying and Mapping, Jinan 250014, China
4. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China
全文: PDF(5751 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

相较于常见的双时相遥感影像,时间序列遥感影像包含更丰富的地表信息,能够缓解“异物同谱”、“同物异谱”的影响,因而在变化检测中具有重要作用。但是目前时间序列遥感影像变化检测方法大多基于像素展开,忽略了像素和周围环境的空间关系,导致变化检测结果“噪声”现象明显。基于此,提出了一种基于时空谱特征的时间序列遥感变化检测算法(change detection based on spatial-temporal-spectral features, CDSTS)。首先,利用灰度共生矩阵和局部统计计算方法,从Landsat时间序列遥感影像中提取每个像素点的时间、空间(纹理和统计)和光谱特征; 其次,通过每个像素在不同波段上的时间序列表现规律,自动筛选出时序特征异常点,并与连续变化检测和分类法(continuous change detection and classification, CCDC)检测结果融合获取高精度变化/未变化训练样本点; 最后,利用上述样本点及其对应的时空谱特征训练支持向量机分类器,并基于该分类器对全图进行分类。结果表明,CDSTS算法在变化区域检测精准度方面明显优于常用的时间序列变化检测算法CCDC和土地扰动连续监测方法(continuous monitoring of land disturbance,COLD),总体精度提升了4.8~11.7百分点。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦乐
何鹏
马玉忠
刘建强
杨彬
关键词 Landsat时间序列变化检测纹理特征    
Abstract

Compared with common dual-temporal satellite images, satellite time series images contain richer surface information and can alleviate the impact of foreign objects with the same spectrum and the same object with different spectra. Therefore, they play an important role in change detection. However, the change detection methods for satellite time series images are mostly based on pixels and ignore the spatial relationship between pixels and their surroundings. This causes noise in the change detection result. Accordingly, this study proposed a method of change detection based on spatial-temporal-spectral features(CDSTS) for satellite time series images. First, the temporal, spatial (textural and statistical), and spectral features of each pixel were extracted from Landsat time series images using a gray-level co-occurrence matrix and local statistical calculation methods. Then, anomalies of time series features were automatically screened according to the time series performance regularity of each pixel in different bands. These anomalies were then fused with the detection results of the continuous change detection and classification method (CCDC) to obtain high-precision changed/unchanged training sample points. Finally, the SVM classifier was trained using the training sample points and their corresponding spatial-temporal-spectral features for full graph classification. The results show that the CDSTS algorithm significantly outperforms the commonly used time series change detection algorithms CCDC and COLD (continuous monitoring of land disturbance) in terms of change detection precision, with the overall precision improved by 4.8 to 11.7 percentage points.

Key wordsLandsat    time series    change detection    textural feature
收稿日期: 2021-10-21      出版日期: 2022-12-27
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于偏振反射与光谱不变量的植被氮含量遥感反演”(41801227);湖南省自然科学基金项目“基于随机辐射传输理论的农作物叶面积指数和叶绿素含量遥感反演”(2019JJ50047)
通讯作者: 杨 彬(1989-),男,博士,副教授,研究方向为遥感图像处理。Email: binyang@hnu.edu.cn
作者简介: 秦 乐(1997-),男,硕士研究生,研究方向为遥感影像时间序列的变化检测。Email: hnuqinle@hnu.edu.cn
引用本文:   
秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
QIN Le, HE Peng, MA Yuzhong, LIU Jianqiang, YANG Bin. Change detection of satellite time series images based on spatial-temporal-spectral features. Remote Sensing for Natural Resources, 2022, 34(4): 105-112.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021351      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/105
Fig.1  各研究区域每年使用的影像数量
Fig.2  CDSTS算法流程
Fig.3  样本像素的归一化光谱、纹理和统计特征
区域 2013年影像 2020年影像 CCDC结果 COLD结果 CDSTS结果
CD
YY
FQ
XA
FCG
Tab.1  不同方法的变化检测结果
区域 2013年影像 2020年影像 CCDC结果 COLD结果 CDSTS结果
CD
YY
FQ
XA
FCG
Tab.2  不同方法的变化检测结果细节对比
场景 评价指标 CCDC COLD CDSTS
未变化 变化 未变化 变化 未变化 变化
CD precision 84.73 92.44 82.46 93.02 97.12 94.55
recall 93.20 83.20 94.00 80.00 94.40 97.20
F1 88.76 87.58 87.85 86.02 95.74 95.86
OA 88.20 87.00 95.80
YY precision 80.95 84.21 77.30 88.43 92.51 94.86
recall 85.00 80.00 90.38 73.46 95.00 92.31
F1 82.93 82.05 83.33 80.25 93.74 93.57
OA 82.50 81.92 93.65
FQ precision 94.66 79.30 90.39 81.79 92.68 88.32
recall 75.00 95.77 79.62 91.54 87.69 93.08
F1 83.69 86.76 84.66 86.39 90.12 90.64
OA 85.38 85.58 90.38
XA precision 82.45 78.91 76.27 84.44 84.28 96.38
recall 77.69 83.46 86.54 73.08 96.92 81.92
F1 80.00 81.12 81.08 78.35 90.16 88.57
OA 80.58 79.81 89.42
FCG precision 88.65 78.46 94.94 85.15 97.61 91.35
recall 75.19 90.37 83.33 95.56 90.74 97.78
F1 81.36 83.99 88.76 90.05 94.05 94.45
OA 82.78 89.44 94.26
Tab.3  不同方法的精度评估
Fig.4  使用不同阈值的变化检测的总体精度
[1] Singh A. Review article digital change detection techniques using remotely-sensed data[J]. International Journal of Remote Sensing, 1989, 10(6):989-1003.
doi: 10.1080/01431168908903939
[2] Silveira E M O, Bueno I T, Acerbi-Junior F W, et al. Using spatial features to reduce the impact of seasonality for detecting tropical forest changes from Landsat time series[J]. Remote Sensing, 2018, 10(6):808.
doi: 10.3390/rs10060808
[3] Gómez C, White J C, Wulder M A. Optical remotely sensed time series data for land cover classification:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:55-72.
doi: 10.1016/j.isprsjprs.2016.03.008
[4] Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images:From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80:91-106.
doi: 10.1016/j.isprsjprs.2013.03.006
[5] Roy D P, Wulder M A, Loveland T R, et al. Landsat8:Science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014, 145:154-172.
doi: 10.1016/j.rse.2014.02.001
[6] Zhu Z, Woodcock C E, Holden C, et al. Generating synthetic Landsat images based on all available Landsat data:Predicting Landsat surface reflectance at any given time[J]. Remote Sensing of Environment, 2015, 162:67-83.
doi: 10.1016/j.rse.2015.02.009
[7] 张良培, 武辰. 多时相遥感影像变化检测的现状与展望[J]. 测绘学报, 2017, 46(10):1447-1459.
Zhang L P, Wu C. The status quo and prospects of multi-temporal remote sensing image change detection[J]. Journal of Surveying and Mapping, 2017, 46(10):1447-1459.
[8] 王志有, 李欢, 刘自增, 等. 基于深度学习算法的卫星影像变化监测[J]. 计算机系统应用, 2020, 29(1):40-48.
Wang Z Y, Li H, Liu Z Z, et al. Satellite image change monitoring based on deep learning algorithm[J]. Computer System Applications, 2020, 29(1):40-48.
[9] Celik T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):772-776.
doi: 10.1109/LGRS.2009.2025059
[10] Tewkesbury A P, Comber A J, Tate N J, et al. A critical synthesis of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14.
doi: 10.1016/j.rse.2015.01.006
[11] Gong M G, Zhan T, Zhang P Z, et al. Superpixel-based difference representation learning for change detection in multispectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote sensing, 2017, 55(5):2658-2673.
doi: 10.1109/TGRS.2017.2650198
[12] Zhang P Z, Gong M G, Su L Z, et al. Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116:24-41.
doi: 10.1016/j.isprsjprs.2016.02.013
[13] Woodcock C E, Loveland T R, Herold M, et al. Transitioning from change detection to monitoring with remote sensing:A paradigm shift[J]. Remote Sensing of Environment, 2020, 238:111558.
doi: 10.1016/j.rse.2019.111558
[14] Hamunyela E, Brandt P, Shirima D, et al. Space-time detection of deforestation,forest degradation and regeneration in montane forests of eastern Tanzania[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88:102063.
doi: 10.1016/j.jag.2020.102063
[15] Liu C, Zhang Q, Luo H, et al. An efficient approach to capture continuous impervious surface dynamics using spatial-temporal rules and dense Landsat time series stacks[J]. Remote Sensing of Environment, 2019, 229:114-132.
doi: 10.1016/j.rse.2019.04.025
[16] Wang Z H, Yao W Y, Tang Q H, et al. Continuous change detection of forest/grassland and cropland in the Loess Plateau of China using all available Landsat data[J]. Remote Sensing, 2018, 10(11):1775.
doi: 10.3390/rs10111775
[17] Xiao P F, Zhang X L, Wang D G, et al. Change detection of built-up land:A framework of combining pixel-based detection and object-based recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:402-414.
doi: 10.1016/j.isprsjprs.2016.07.003
[18] 杜培军, 柳思聪. 融合多特征的遥感影像变化检测[J]. 遥感学报, 2012, 16(4):663-677.
Du P J, Liu S C. Remote sensing image change detection based on multi-feature fusion[J]. Journal of Remote Sensing, 2012, 16(4):663-677.
[19] Zhu Z. Change detection using landsat time series:A review offrequencies,preprocessing,algorithms,and applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:370-384.
doi: 10.1016/j.isprsjprs.2017.06.013
[20] Kennedy R E, Yang Z, Cohen W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr-Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010, 114(12):2897-2910.
doi: 10.1016/j.rse.2010.07.008
[21] Huang C, Goward S N, Masek J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sensing of Environment, 2010, 114(1):183-198.
doi: 10.1016/j.rse.2009.08.017
[22] Verbesselt J, Zeileis A, Herold M. Near real-time disturbance detection using satellite image time series[J]. Remote Sensing of Environment, 2012, 123:98-108.
doi: 10.1016/j.rse.2012.02.022
[23] Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2013, 144(1):152-171.
doi: 10.1016/j.rse.2014.01.011
[24] Zhu Z, Zhang J, Yang Z, et al. Continuous monitoring of land disturbance based on Landsat time series[J]. Remote Sensing of Environment, 2020, 238:111116.
doi: 10.1016/j.rse.2019.03.009
[25] Zhang H, Gong M G, Zhang P Z, et al. Feature-level change detection using deep representation and feature change analysis for multispectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1666-1670.
doi: 10.1109/LGRS.2016.2601930
[26] Chen G, Hay G J, Carvalho L M T, et al. Object-based change detection[J]. International Journal of Remote Sensing, 2012, 33(14):4434-4457.
doi: 10.1080/01431161.2011.648285
[1] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[2] 李娜, 甘甫平, 董新丰, 李娟, 张世凡, 李彤彤. 基于高分五号高光谱数据的石漠化调查应用研究[J]. 自然资源遥感, 2023, 35(2): 230-235.
[3] 闫涵, 张毅. 利用GF-6影像结合国土“三调”开展西部地区县域自然资源调查[J]. 自然资源遥感, 2023, 35(2): 277-286.
[4] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[5] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[6] 李毅, 程丽娜, 鲁莹莹, 张博淳, 于森, 贾明明. 基于最大值合成和最大类间方差法莱州湾滨海滩涂变化研究[J]. 自然资源遥感, 2022, 34(4): 68-75.
[7] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[8] 董双发, 范晓, 石海岗, 许莉萍, 章新益. 基于Landsat8和无人机的福清核电温排水分布研究[J]. 自然资源遥感, 2022, 34(3): 112-120.
[9] 曾晖, 任华忠, 朱金顺, 郭金鑫, 叶昕, 滕沅建, 聂婧, 秦其明. 叙利亚战争对植被的影响[J]. 自然资源遥感, 2022, 34(3): 121-128.
[10] 骆泓鉴, 明冬萍, 徐录. 基于GEE的遥感生态指数时序计算[J]. 自然资源遥感, 2022, 34(2): 271-277.
[11] 王驷鹞, 赵春雷, 陈霞, 刘丹. 基于遥感的唐山市绿色空间演化及对热岛效应的影响[J]. 自然资源遥感, 2022, 34(2): 168-175.
[12] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[13] 潘建平, 徐永杰, 李明明, 胡勇, 王春晓. 结合相关系数和特征分析的植被区域自动变化检测研发[J]. 自然资源遥感, 2022, 34(1): 67-75.
[14] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[15] 伯英杰, 曾业隆, 李国庆, 曹兴文, 姚清秀. 浮岛光伏电场对地表温度空间分布特征的影响[J]. 自然资源遥感, 2022, 34(1): 158-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发