Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 161-170    DOI: 10.6046/zrzyyg.2022434
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于高分光学卫星影像的泸定地震型滑坡提取与分析
张雨1(), 明冬萍1(), 赵文祎1,2, 徐录1, 赵治1, 刘冉1
1.中国地质大学(北京)信息工程学院,北京 100083
2.中国地质环境监测院,北京 100081
The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images
ZHANG Yu1(), MING Dongping1(), ZHAO Wenyi1,2, XU Lu1, ZHAO Zhi1, LIU Ran1
1. School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
2. China Geological Environment Monitoring Institute, Beijing 100081, China
全文: PDF(8665 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

2022年9月5日,四川省甘孜州泸定县发生6.8级地震,地震诱发大量山体滑坡。为满足震后大范围滑坡快速提取需求,文章使用泸定震前震后高分二号和高分六号卫星影像和数字高程模型(digital elevation model,DEM)数据,利用面向对象方法,采用多尺度逐步优化分割方法,根据实验区对象光谱、专题指数、几何纹理、地形特征,利用最近邻分类快速提取滑坡信息。震前震后总体识别精度分别为92.3%和95.4%。对地震前后滑坡分布进行综合分析,确定地震诱发新增滑坡23.91 km2。选取7种地形因子,通过空间统计分析总结震后滑坡分布特征,发现震后滑坡主要受鲜水河断裂带影响,沿河流呈带状分布、沿断裂带附近山坡沟谷片状密集分布; 与历史滑坡相比,新增滑坡高程范围较为稳定,分布坡度范围扩大,震后滑坡与地表粗糙度呈现明显的负相关关系。研究为震后滑坡提取提供了技术参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雨
明冬萍
赵文祎
徐录
赵治
刘冉
关键词 光学遥感面向对象滑坡提取泸定县6.8级地震    
Abstract

On September 5, 2022, a Ms 6.8 earthquake occurred in Luding County, Ganzi Prefecture, Sichuan Province, inducing numerous landslides. This study collected the pre- and post-earthquake images from the GF-2 and GF-6 satellites, as well as the DEM data of Luding. Then, using the object-oriented method, the stepwise optimization multi-scale segmentation method, and the nearest neighbor classification method, this study extracted the landslide information according to the spectrum, thematic index, geometric texture, and topographic features of the objects in the experimental area. The overall identification accuracy of pre- and post-earthquake landslides was 92.3% and 95.4%, respectively. The comprehensive analysis of the distribution of pre- and post-earthquake landslide landslides shows that 23.91 km2 of new landslides were induced by the earthquake. This study summarized the distribution characteristics of post-earthquake landslides through the spatial statistical analysis of seven topographic factors. The results are as follows: ① The post-earthquake landslides were mainly affected by the Xianshuihe fault zone, and they show a banded distribution along rivers and a lamellar, dense distribution along the hillsides and valleys near the fault zone; ② Compared with the historical landslides, the new landslides have a relatively stable elevation range and a large slope range. Moreover, there is a significantly negative correlation between the area of the post-earthquake landslides and the surface roughness.

Key wordsoptical remote sensing    object-oriented    landslide information extraction    Ms 6.8 earthquake in Luding County
收稿日期: 2022-11-07      出版日期: 2023-03-20
ZTFLH:  TP753  
基金资助:中国地质调查局项目“滑坡监测技术与智能预警应用示范”(DD20211364);中央高校基本科研业务费专项资金“多源多时相遥感影像建筑物震害信息智能提取”(2-9-2021-044)
通讯作者: 明冬萍(1976-),女,博士,教授,主要从事遥感信息智能化提取与分析、大数据地质灾害智能化防治等研究。Email: mingdp@cugb.edu.cn
作者简介: 张雨(1999-),女,硕士研究生,研究方向为遥感信息提取。Email: 2004210020@email.cugb.edu.cn
引用本文:   
张雨, 明冬萍, 赵文祎, 徐录, 赵治, 刘冉. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1): 161-170.
ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images. Remote Sensing for Natural Resources, 2023, 35(1): 161-170.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022434      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/161
Fig.1  研究区位置
Fig.2  研究方法流程图
Fig.3  不同尺度下方差与ROC变化曲线
Fig.4  不同参数下的光谱差异分割后处理结果
Fig.5  研究区一滑坡提取结果
Fig.6  研究区二滑坡提取结果
Fig.7  双时相滑坡提取结果
Fig.8  震后滑坡随地形因子分布统计图
Fig.9  滑坡分布距断裂带距离
[1] 李强, 张景发, 罗毅, 等. 2017年“8·8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报, 2019, 23(4):785-789.
Li Q, Zhang J F, Luo Y, et al. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8,2017[J]. Journal of Remote Sensing, 2019, 23(4):785-789.
[2] 苏凤环, 刘洪江, 韩用顺. 汶川地震山地灾害遥感快速提取及其分布特点分析[J]. 遥感学报, 2008(6):956-963.
Su F H, Liu H J, Han Y S. The extraction of mountain hazard induced by Wenchuan earthquake and analysis of its distributing characteristic[J]. Journal of Remote Sensing, 2008(6):956-963.
[3] Nichol J, Wong M S. Satellite remote sensing for detailed landslide inventories using change detection and image fusion[J]. International Journal of Remote Sensing, 2005, 26(9):1913-1926.
doi: 10.1080/01431160512331314047
[4] 顾海燕, 李海涛, 闫利. 地理本体驱动的遥感影像面向对象分析方法[J]. 武汉大学学报(信息科学版), 2018, 43(1):31-36.
Gu H Y, Li H T, Yan L. A geographic object-based image analysis methodology based on geo-ontology[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1):31-36.
[5] 魏家旺, 惠文华, 程梦真, 等. 地理本体驱动的面向对象滑坡识别[J]. 遥感信息, 2020, 35(2):94-99.
Wei J W, Hui W H, Cheng M Z, et al. Geographic ontology-driven object oriented landslide recognition[J]. Remote Sensing Information, 2020, 35(2):94-99.
[6] 刘辰, 刘修国, 陈启浩, 等. 面向对象滑坡信息提取中DEM空间分辨率影响分析[J]. 遥感技术与应用, 2014(4):631-638.
Liu C, Liu X G, Chen Q H, et al. Impact of DEM spatial resolution on landslide extraction using object-oriented methods[J]. Remote Sensing Technology and Application, 2014(4):631-638.
[7] 张群, 赵超英. 基于面向对象的高分遥感数据甘肃黑方台黄土滑坡半自动识别[J]. 灾害学, 2017, 32(3):210-215.
Zhang Q, Zhao C Y. Semiautomatic object-oriented loose landslide recognition based on high resolution remote sensing images in Heifangtai,Gansu[J]. Journal of Catastrophology, 2017, 32(3):210-215.
[8] 丁永辉, 张勤, 杨成生, 等. 基于高分遥感的金沙江流域滑坡识别——以巴塘县王大龙村为例[J]. 测绘通报, 2022,(4):51-55.
Ding Y H, Zhang Q, Yang C S, et al. Landslide identification in Jinsha River basin based on high-resolution remote sensing:Taking Wangdalong Village of Batang County as an example[J]. Bulletin of Surveying and Mapping, 2022,(4):51-55.
[9] 彭令, 徐素宁, 梅军军, 等. 地震滑坡高分辨率遥感影像识别[J]. 遥感学报, 2017, 21(4):509-518.
Peng L, Xu S N, Mei J J, et al. Earthquake-induced landslide recognition using high-resolution remote sensing images[J]. Journal of Remote Sensing, 2017, 21(4):509-518.
[10] 唐尧. 利用国产遥感卫星进行金沙江高位滑坡灾害灾情应急监测[J]. 遥感学报, 2019, 23(2):252-261.
Tang Y. Emergency monitoring of high-level landslide disasters in Jinsha River using domestic remote sensing satellites[J]. Journal of Remote Sensing, 2019, 23(2):252-261.
[11] Han Y, Wang P, Zheng Y, et al. Extraction of landslide information based on object-oriented approach and cause analysis in Shuicheng,China[J]. Remote Sensing, 2022, 14(3):502.
doi: 10.3390/rs14030502
[12] Tavakkoli P S, Shahabi H, Jarihani B, et al. Landslide detection using multi-scale image segmentation and different machine learning models in the higher himalayas[J]. Remote Sensing, 2019, 11(21):2575.
doi: 10.3390/rs11212575
[13] Barlow J, Martin Y, Franklin S E. Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains,British Columbia[J]. Canadian Journal of Remote Sensing, 2003, 29(4):510-517.
doi: 10.5589/m03-018
[14] Martha T R K N, Jetten V. Characterising spectral,spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods[J]. Geomorphology, 2010, 116(1-2):24-36.
doi: 10.1016/j.geomorph.2009.10.004
[15] 林齐根. 基于光谱、空间和形态特征的面向对象滑坡识别[J]. 遥感技术与应用, 2017, 32(5):931-937.
Lin Q G. Object-oriented detection of landslides based on the spectral,spatial and morphometric properties of landslides[J]. Remote Sensing Technology and Application, 2017, 32(5):931-937.
[16] Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6):1337-1352.
doi: 10.1007/s10346-020-01353-2
[17] Sameen M I, Pradhan B. Landslide detection using residual networks and the fusion of spectral and topographic information[J]. IEEE Access, 2019, 7:114363-114373.
doi: 10.1109/Access.6287639
[18] Cai H, Chen T, Niu R, et al. Landslide detection using densely connected convolutional networks and environmental conditions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:5235-5247.
doi: 10.1109/JSTARS.2021.3079196
[19] Bragagnolo L, Rezende L R, Dasilva R V, et al. Convolutional neural networks applied to semantic segmentation of landslide scars[J]. Catena, 2021, 201:105189.
doi: 10.1016/j.catena.2021.105189
[20] Prakash N, Manconi A, Loew S. Mapping landslides on EO data:performance of deep learning models vs.traditional machine learning models[J]. Remote Sensing, 2020, 12(3):346.
doi: 10.3390/rs12030346
[21] Liu T, Chen T, Niu R, et al. Landslide detection mapping employing CNN,ResNet,and DenseNet in the Three Gorges Reservoir,China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:11417-11428.
doi: 10.1109/JSTARS.2021.3117975
[22] 王欣, 方成勇, 唐小川, 等. 泸定 Ms 6.8 级地震诱发滑坡应急评价研究[J]. 武汉大学学报(信息科学版), 2023, 48(1):25-35.
Wang X, Fang C Y, Tang X C, et al. Research on emergency evaluation of landslides induced by Luding Ms 6.8 earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1):25-35.
[23] 陈扬洋. 基于对地观测数据的滑坡灾害解译与分析[D]. 北京: 中国地质大学(北京), 2022.
Chen Y Y. Interpretation and analysis of landslide hazard based on earth observation data[D]. Beijing: China University of Geosciences (Beijing), 2022.
[24] Liu P, Wei Y, Wang Q, et al. Research on post-earthquake landslide extraction algorithm based on improved U-Net model[J]. Remote Sensing, 2020, 12(5):894.
doi: 10.3390/rs12050894
[25] Liu P, Wei Y, Wang Q, et al. A research on landslides automatic extraction model based on the improved mask R-CNN[J]. ISPRS International Journal of Geo-Information, 2021, 10(3):168.
doi: 10.3390/ijgi10030168
[26] Shi W, Zhang M, Ke H, et al. Landslide recognition by deep convolutional neural network and change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6):4654-4672.
doi: 10.1109/TGRS.2020.3015826
[27] 王运生, 程万强, 刘江伟. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制[J]. 地球科学, 2022, 47(3):950-958.
Wang Y S, Cheng W Q, Liu J W. Forming process and mechanisms of geo-hazards in Luding section of the Sichuan-Tibet railway[J]. Earth Science, 2022, 47(3):950-958.
[28] 黄志坚. 面向对象影像分析中的多尺度方法研究[D]. 长沙: 国防科学技术大学, 2014.
Huang Z J. Research on multiscale methods in object-based image analysis[D]. Changsha: National University of Defence Technology, 2014.
[29] 关元秀, 王学恭, 郭涛, 等. eCognition基于对象影像分析教程[M]. 北京: 科学出版社, 2019.
Guan Y X, Wang X G, Guo T, et al. eCognition object-based image analysis tutorial[M]. Beijing: Science Press, 2019.
[30] 熊华伟, 俞春生, 李小玉, 等. 基于高分辨率遥感影像的不透水面信息快速提取[J]. 国土与自然资源研究, 2015, 1:52-54.
Xiong H W, Yu C S, Li X Y, et al. Rapid extraction of impervious surface information based on high-resolution remote sensing images[J]. Territory and Natural Resources Study, 2015, 1:52-54.
[31] Ming D, Li J, Wang J, et al. Scale parameter selection by spatial statistics for GEOBIA:Using mean-shift based multi-scale segmentation as an example[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106:28-41.
doi: 10.1016/j.isprsjprs.2015.04.010
[32] 范雷, 张琪. 金沙江苏洼龙—奔子栏河段滑坡灾害发育分布规律[J]. 长江科学院院报, 2016, 33(3):38-41.
Fan L, Zhang Q. Occurrence and distribution characteristics of landslides at Suwalong-Benzilan along Jinsha River[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(3):38-41.
[33] Dragut L, Csillik O, Eisank C, et al. Automated parameterisation for multi-scale image segmentation on multiple layers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88:119-127.
doi: 10.1016/j.isprsjprs.2013.11.018
[34] Dragut L, Tiede D, Levick S R. ESP:A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6):859-871.
doi: 10.1080/13658810903174803
[35] 黄汀, 白仙富, 庄齐枫, 等. 高分一号汶川极震区滑坡提取研究[J]. 测绘通报, 2018,(2):67-71,82.
Huang T, Bai X F, Zhuang Q F, et al. Research on landslides extraction based on the Wenchuan earthquake in GF-1 remote sensing image[J]. Bulletin of Surveying and Mapping, 2018,(2):67-71,82.
[36] 陈晓利, 刘春国, 传一健, 等. 鲁甸地震的滑坡物质运移规律与地形特征[J]. 地震地质, 2021, 43(1):92-104.
Chen X L, Liu C G, Chuan Y J, et al. Study on the distribution of co-seismic landslides and terrain features in the Ms 6.5 Ludian earthquake affected area[J]. Seismology and Geology, 2021, 43(1):92-104.
[37] Chigira M, Yagi H. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan[J]. Engineering Geology, 2006, 82(4):202-221.
doi: 10.1016/j.enggeo.2005.10.006
[38] 铁永波, 张宪政, 卢佳燕, 等. 四川省泸定县Ms 6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质, 2022, 49(6):1-12.
Tie Y B, Zhang X Z, Lu J Y, et al. Characteristics of geological hazards and it’s mitigations of the Ms 6.8 earthquake in Luding County,Sichuan Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6):1-12.
[1] 梁茜亚, 王卷乐, 李朋飞, DAVAADORJ Davaasuren. 基于GF-1影像的蒙古高原干旱半干旱地区自然道路提取——以蒙古国古尔班特斯苏木为例[J]. 自然资源遥感, 2023, 35(2): 122-131.
[2] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[3] 石敏, 李慧颖, 贾明明. 基于GEE云平台与Landsat数据的山口自然保护区红树林时空变化分析[J]. 自然资源遥感, 2023, 35(2): 61-69.
[4] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[5] 李晨辉, 郝利娜, 许强, 王一, 严丽华. 面向对象的高分辨率遥感影像地震滑坡分层识别[J]. 自然资源遥感, 2023, 35(1): 74-80.
[6] 赵连杰, 吴孟泉, 郑龙啸, 栾绍鹏, 赵贤峰, 薛明月, 刘佳燕, 刘晨曦. 胶东半岛北部海岸线时空变迁及驱动分析[J]. 自然资源遥感, 2022, 34(4): 87-96.
[7] 晏红波, 韦晚秋, 卢献健, 杨志高, 黎振宝. 基于高光谱特征的土壤含水量遥感反演方法综述[J]. 自然资源遥感, 2022, 34(2): 1-9.
[8] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[9] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[10] 范莹琳, 娄德波, 张长青, 魏英娟, 贾福东. 基于面向对象的铁尾矿信息提取技术研究——以迁西地区北京二号遥感影像为例[J]. 自然资源遥感, 2021, 33(4): 153-161.
[11] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[12] 苏龙飞, 李振轩, 高飞, 余敏. 遥感影像水体提取研究综述[J]. 国土资源遥感, 2021, 33(1): 9-11.
[13] 张鹏, 林聪, 杜培军, 王欣, 唐鹏飞. 南京市生态红线区高分辨率遥感精准监测方法与应用[J]. 国土资源遥感, 2020, 32(3): 157-164.
[14] 夏既胜, 马梦莹, 符钟壬. 基于GF-2遥感影像的机械性破损面提取方法[J]. 国土资源遥感, 2020, 32(2): 26-32.
[15] 冯林艳, 谭炳香, 王晓慧, 陈新云, 曾伟生, 戚曌. 基于分布函数的对象级森林变化快速检测[J]. 国土资源遥感, 2020, 32(2): 73-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发