Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 27-34    DOI: 10.6046/zrzyyg.2021421
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
多尺度轻量化CNN在SAR图像地物分类中的应用
孙盛1(), 蒙芝敏1, 胡忠文2, 余旭3
1.广东工业大学计算机学院,广州 510006
2.深圳大学自然资源部大湾区地理环境监测重点实验室,深圳 518000
3.广东工业大学土木与交通工程学院,广州 510006
Application of multi-scale and lightweight CNN in SAR image-based surface feature classification
SUN Sheng1(), MENG Zhimin1, HU Zhongwen2, YU Xu3
1. School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
2. Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Ministry of Natural Rresources, Shenzhen University, Shenzhen 518000, China
3. School of Civil and Transportation Engineering,Guangdong University of Technology, Guangzhou 510006, China
全文: PDF(3524 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

结合粤港澳大湾区的亚热带气候特点,采用TerraSAR-X雷达遥感卫星对实验区域进行了图像采集; 针对雷达卫星观测场景中地物目标尺度变化不一的问题,提出了一个应用于地物分类的卷积神经网络模型(ENet convolution spatial pyramid pooling,ENet-CSPP)。利用了普通卷积比空洞卷积更好保持领域信息的特点,提出了多尺度特征融合模块——卷积空域金字塔池化模块; 针对SAR遥感图像数据集训练样本偏少的问题,提出了将多尺度特征融合模块和轻量化卷积神经网络结合起来的方法; ENet-CSPP网络的编码器部分由改进后的ENet网络和卷积空域金字塔池化模块构成,解码器部分实现深、浅层特征的融合后输出地物分类图像。在GDUT-Nansha数据集上进行了定量对比实验,ENet-CSPP模型在像素精度、平均像素精度和平均交并比3个性能指标上都要优于其他模型,表明多尺度轻量化的模型有效提高了地物分类的精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙盛
蒙芝敏
胡忠文
余旭
关键词 合成孔径雷达地物分类卷积神经网络轻量化网络    
Abstract

Targeting the subtropical climate characteristics of the Guangdong-Hong Kong-Macao Greater Bay Area, this study acquired the images of the experimental area from the TerraSAR-X Radar remote sensing satellite. Given the varying scale of the surface feature targets in the Radar satellite observation scenes, this study proposed an ENet convolution spatial pyramid pooling module (ENet-CSPP) model for surface feature classification. Since ordinary convolution can more effectively maintain domain information than atrous convolution, this study proposed a multi-scale feature fusion module based on convolution spatial pyramid pooling. Since there were a few training samples in the SAR remote sensing image dataset, this study combined the multi-scale feature fusion module with the lightweight convolutional neural network. The encoder of the ENet-CSPP network consisted of an improved ENet network and the convolution spatial pyramid pooling module. The decoder output surface feature classification images after the fusion of deep and shallow features. The quantitative comparison experiments were conducted on the GDUT-Nansha dataset. The ENet-CSPP model outperformed other models in three performance indices, namely pixel accuracy, average pixel accuracy, and mean intersection over union. This result indicates that the multi-scale lightweight model effectively improved the accuracy of surface feature classification.

Key wordssynthetic aperture Radar(SAR)    surface feature classification    convolutional neural network    lightweight network
收稿日期: 2021-12-03      出版日期: 2023-03-20
ZTFLH:  P236  
基金资助:国家自然科学基金项目“纠缠态的超级纠缠目击者特性及其推广研究”(61672007);自然资源部大湾区地理环境监测重点实验室开放基金项目“基于多极化星载合成孔径雷达图像的粤港澳大湾区海岸线动态监测”(2019002);广东省国际合作领域项目(2019A050509009)
作者简介: 孙盛(1980-),男,博士,副教授,研究方向为遥感图像处理和计算机视觉。Email: sunsheng@gdut.edu.cn
引用本文:   
孙盛, 蒙芝敏, 胡忠文, 余旭. 多尺度轻量化CNN在SAR图像地物分类中的应用[J]. 自然资源遥感, 2023, 35(1): 27-34.
SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021421      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/27
ENet ENet-CSPP
层名 采样类型 输出大小/像素 层名 采样类型 输出大小/像素
initial 16×256×256
bottleneck1.0 downsampling 64×128×128 bottleneck1.0 downsampling 64×256×256
4bottlencek1.x 64×128×128 4bottlencek1.x 64×256×256
bottleneck2.0 downsampling 128×64×64 bottleneck2.0 downsampling 128×128×128
8bottleneck2.x 128×64×64 8bottleneck2.x 128×128×128
repeat section 2,without bottleneck2.0 CSPP N2×128×128
bottleneck4.0 upsampling 64×128×128 upsample1.0 upsampling N2×256×256
2bottleneck4.x 64×128×128 concat (N1+N2)×256×256
bottleneck5.0 upsampling 16×256×256 lastconv C×256×256
2bottleneck5.x 16×256×256 upsample2.0 upsampling C×512×512
fullconv C×512×512
Tab.1  ENet和ENet-CSPP的结构对比
Fig.1  总体结构
Fig.2  部分训练集数据
Fig.3  测试集地理区域
权重参数 PA mPA mIoU
无权重 88.8 78.8 70.1
0.64,0.73,0.65,0.96 88.6 81.5 71.0
Tab.2  交叉熵损失函数类别权重对模型性能的影响
N2+N1 PA mPA mIoU
64+0 88.6 76.9 68.6
64+8 88.4 79.2 69.9
64+16 88.4 78.7 69.6
64+32 88.2 79.0 69.6
64+64 88.3 78.9 69.6
16+8 88.6 81.5 71.0
32+8 88.6 77.6 69.2
128+8 88.7 79.3 70.2
Tab.3  浅层特征和深层特征通道数对模型性能的影响
Fig.4  不同模型在测试集遥感图像上的地物分类结果
模型 PA mPA IoU mIoU
植被 建筑物 水体 道路
FCN 87.5 78.3 72.8 80.1 89.7 30.3 68.2
SegNet 87.1 79.8 72.9 79.5 88.8 32.9 68.5
U-Net 88.0 80.0 73.3 80.5 90.5 34.1 69.6
DeepLabV3+ 87.1 80.2 70.5 79.7 89.1 37.0 69.1
ENet 85.7 77.7 69.3 76.7 88.8 29.4 66.1
ENet-CSPP 88.6 81.5 74.4 81.8 90.3 37.3 71.0
Tab.4  不同模型在GDUT-Nansha数据集上的对比
[1] 吕启, 窦勇, 牛新, 等. 基于DBN模型的遥感图像分类[J]. 计算机研究与发展, 2014, 51(9):1911-1918.
Lyu Q, Dou Y, Niu X, et al. Remote sensing image classification based on DBN model[J]. Journal of Computer Research and Development, 2014, 51(9):1911-1918.
[2] 高照忠, 魏海霞, 黄铁兰. 粤港澳大湾区土地覆盖及景观格局时空变化分析[J]. 测绘通报, 2021(5):25-29.
Gao Z Z, Wei H X, Huang T L. Analysis of spatio-temporal changes of land cover and landscape pattern in Guangdong-Hong Kong-Macao Greater Bay Area[J]. Bulletin of Surveying and Mapping, 2021(5):25-29.
[3] van Zyl J J, Kim Y. Synthetic aperture Radar polarimetry[M]. Hoboken:Wiley, 2011:3.
[4] Yao W, Marmanis D, Datcu M. Semantic segmentation using deep neural networks for SAR and optical image pairs[C]// Big Data From Space, 2017:1-4.
[5] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-650.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717
[6] Henry C, Azimi S M, Merkle N. Road segmentation in SAR satellite images with deep fully convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(12):1867-1871.
doi: 10.1109/LGRS.2018.2864342
[7] Wu W J, Li H L, Xin W, et al. PolSAR image semantic segmentation based on deep transfer learning-realizing smooth classification with small training sets[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6):977-981.
doi: 10.1109/LGRS.8859
[8] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6230-6239.
[9] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2014(4):357-361.
[10] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
[11] 张静, 靳淇兆, 王洪振, 等. 多尺度信息融合的遥感图像语义分割模型[J]. 计算机辅助设计与图形学学报, 2019, 31(9):1510-1517.
Zhang J, Jin Q Z, Wang H Z, et al. Semantic segmentation on remote sensing images with multi-scale feature fusion[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(9):1510-1517.
[12] Chen L C, Papandreou G, Schroff F. Rethinking atrous convolution for semantic image segmentation[EB/OL].(2017-06-17)(2021-11-17). https://arxiv.org/abs/1706.05587.
[13] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]// International Conference on Learning Representations, 2015:1-14.
[14] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778.
[15] 刘钊, 赵桐, 廖斐凡, 等. 基于语义分割网络的高分遥感影像城市建成区提取方法研究与对比分析[J]. 国土资源遥感, 2021, 33(1):45-53.doi:10.6046/gtzyyg.2020162.
doi: 10.6046/gtzyyg.2020162
Liu Z, Zhao T, Liao F F, et al. Research and comparative analysis of urban built-up area extraction methods from high-resolution remote sensing images based on semantic segmentation network[J]. Remote Sensing for Land and Resources, 2021, 33(1):45-53.doi:10.6046/gtzyyg.2020162.
doi: 10.6046/gtzyyg.2020162
[16] Paszke A, Chaurasia A, Kim S, et al. ENet:A deep neural network ar- chitecture for real-time semantic segmentation[EB/OL].(2016-06-07)[2021-11-17]. https://arxiv.org/abs/1606.02147.
[17] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[18] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin:Springer, 2015:234-241.
[19] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Computer Vision-European Conference on Computer Vision. Berlin:Springer, 2018:833-851.
[20] 水文泽, 孙盛, 余旭, 等. 轻量化卷积神经网络在SAR图像语义分割中的应用[J]. 计算机应用研究, 2021, 38(5):1573-1580.
Shui W Z, Sun S, Yu X, et al. Application of lightweight convolutional neural network in SAR image semantic segmentation[J]. Application Research of Computers, 2021, 38(5):1573-1580.
[21] Werninghaus R, Buckreuss S. The TerraSAR-X mission and system design[J]. IEEE Trans on Geoscience and Remote Sensing, 2009, 48(2):606-614.
doi: 10.1109/TGRS.2009.2031062
[1] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[2] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[3] 杨昭颖, 韩灵怡, 郑向向, 李文吉, 冯磊, 王轶, 杨永鹏. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2): 224-230.
[4] 孔爱玲, 张承明, 李峰, 韩颖娟, 孙焕英, 杜漫飞. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2): 47-55.
[5] 廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类[J]. 自然资源遥感, 2022, 34(2): 152-161.
[6] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[7] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[8] 刘钊, 赵桐, 廖斐凡, 李帅, 李海洋. 基于语义分割网络的高分遥感影像城市建成区提取方法研究与对比分析[J]. 国土资源遥感, 2021, 33(1): 45-53.
[9] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[10] 董天成, 杨肖, 李卉, 张志, 齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取[J]. 国土资源遥感, 2021, 33(1): 129-137.
[11] 卫虹宇, 赵银娣, 董霁红. 基于改进RetinaNet的冷却塔目标检测[J]. 国土资源遥感, 2020, 32(4): 68-73.
[12] 刘钊, 廖斐凡, 赵桐. 基于PSPNet的遥感影像城市建成区提取及其优化方法[J]. 国土资源遥感, 2020, 32(4): 84-89.
[13] 江珊, 王春, 宋宏利, 刘玉锋. 基于SAR与光学遥感数据相结合的农作物种植类型识别研究[J]. 国土资源遥感, 2020, 32(4): 105-110.
[14] 李宇, 肖春姣, 张洪群, 李湘眷, 陈俊. 深度卷积融合条件随机场的遥感图像语义分割[J]. 国土资源遥感, 2020, 32(3): 15-22.
[15] 蔡之灵, 翁谦, 叶少珍, 简彩仁. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3): 80-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发