Information extraction of inland surface water bodies based on optical remote sensing:A review
FENG Siwei1,2(), YANG Qinghua2, JIA Weijie2(), WANG Mengfei2, LIU Lei3
1. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China 2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China 3. China National Geological & Mining Corporation, Beijing 100020, China
Inland surface water bodies, including rivers, lakes, and reservoirs, are significant freshwater resources for human beings and ecology, and their monitoring and control are greatly significant. Optical remote sensing provides great convenience for the monitoring of surface water resources, proving to be an important means for the information extraction and dynamic monitoring of inland surface water bodies. This study reviews the basic principles, remote sensing data sources, methods, existing issues, and prospects of the information extraction of water bodies. Owing to the unique characteristics of the remote sensing images of inland surface water bodies, their information can be extracted in an accurate, scientific, and effective manner using remote sensing. Multiple remote sensing data resources can be applied to the information extraction, and the optical remote sensing-based extraction methods include the threshold value method, classifier method, object orientation method, and deep learning method. Given that different methods have unique advantages, disadvantages, and applicable conditions, selecting appropriate multi-source data and varying methods based on the conditions of study areas tend to improve the information extraction accuracy. Nevertheless, there still exist some issues in the optical remote sensing-based water body information extraction, such as the balance of spatiotemporal resolution of remote sensing data, the information mining of water body characteristics, the generalization ability of water body models, and the uniformity of criteria for accuracy evaluation.
冯思维, 杨清华, 贾伟洁, 王梦飞, 刘蕾. 基于光学遥感的内陆地表水体提取综述[J]. 自然资源遥感, 2024, 36(3): 41-56.
FENG Siwei, YANG Qinghua, JIA Weijie, WANG Mengfei, LIU Lei. Information extraction of inland surface water bodies based on optical remote sensing:A review. Remote Sensing for Natural Resources, 2024, 36(3): 41-56.
Cui Q L, Wang M Q, Huang Y J. Water information extraction in Shanghai by integrating random forest model and six water indices[J]. Bulletin of Surveying and Mapping, 2022(2):106-109.
doi: 10.13474/j.cnki.11-2246.2022.0052
[2]
Li J J, Meng Y Z, Li Y X, et al. Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning[J]. Journal of Hydrology, 2022, 612:128202.
[3]
姜浩. 基于光学遥感的高精度陆地水体提取方法研究[D]. 北京: 中国科学院大学, 2015.
Jiang H. Research on high-precision extraction method of land terrestrial water body based on optical remote sensing imagery[D]. Beijing: University of Chinese Academy of Sciences, 2015.
[4]
王航, 秦奋. 遥感影像水体提取研究综述[J]. 测绘科学, 2018, 43(5):23-32.
Wang H, Qin F. Summary of the research on water body extraction and application from remote sensing image[J]. Science of Surveying and Mapping, 2018, 43(5):23-32.
Li D R, Sui H G, Shan J. Discussion on key technologies of geographic national conditions monitoring[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5):505-512,502.
[6]
Huang C, Chen Y, Zhang S, et al. Detecting,extracting,and monitoring surface water from space using optical sensors:A review[J]. Reviews of Geophysics, 2018, 56(2):333-360.
Li D, Wu B S, Chen B W, et al. Review of water body information extraction based on satellite remote sensing[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(2):147-161.
[8]
梅安新, 彭望琭, 秦其明, 等. 遥感导论[M]. 北京: 高等教育出版社, 2001.
Mei A X, Peng W L, Qin Q M, et al. Introduction to remote sensing[M]. Beijing: Higher Education Press, 2001.
Xu J Y, Xu F B, Zhang Y Q, et al. Monitoring suspected pollution on unutilized land using gray-level co-occurrence matrices[J]. Journal of Beijing University of Technology, 2018, 44(11):1423-1433.
[12]
彭文杰. 内陆湖泊湖流纹理分析及提取研究[D]. 赣州: 江西理工大学, 2021.
Peng W J. Research on analysis and extraction of inland lake stream texture[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
[13]
王浩. 基于小波变换的高光谱遥感图像融合研究[D]. 南昌: 南昌航空大学, 2019.
Wang H. The study on hyperspectral remote sensing image fusion based on wavelet transform[D]. Nanchang: Nanchang Hangkong University, 2019.
Xiao Y, Zhou J. Overview of image edge detection[J]. Computer Engineering and Applications, 2023, 59(5):40-54.
doi: 10.3778/j.issn.1002-8331.2209-0122
[15]
Qiao C, Luo J, Sheng Y, et al. An adaptive water extraction method from remote sensing image based on NDWI[J]. Journal of the In-dian Society of Remote Sensing, 2012, 40(3):421-433.
Shi Y M. Study on water body extraction and discharge inversion in the source region of the yellow river based on multi-source remote sensing data[D]. Handan: Hebei University of Engineering, 2021.
Jin Y L. Landsat satellite data based on cloud platform research on water extraction methods[D]. Anshan: University of Science and Technology Liaoning, 2021.
[18]
王鹏程. 基于形态学的遥感图像河流分割方法研究[D]. 兰州: 兰州交通大学, 2021.
Wang P C. Research on river segmentation method of remote sensing image based on morphology[D]. Lanzhou: Lanzhou Jiaotong University, 2021.
Chai B H. Digitization of old maps based on machine learning and image morphology:An example of surface water extraction in mo-dern Shanghai[J]. The Chinese Historical Geography, 2022, 42(2):117-133,158-159.
[20]
马鹏. 基于形态学的遥感图像地表水体分割与监测方法研究[D]. 兰州: 兰州交通大学, 2018.
Ma P. Research on remote sensing image segmentation and monitoring method of surface water based on morphology[D]. Lanzhou: Lanzhou Jiaotong University, 2018.
Zhao C M, Dong X H, Bo H J, et al. Improving water body extraction method in a mountainous river in wet and dry seasons based on GF-1 images[J]. China Rural Water and Hydropower, 2022(9):155-161.
[22]
Prigent C, Papa F, Aires F, et al. Global inundation dynamics inferred from multiple satellite observations,1993—2000[J]. Journal of Geophysical Research:Atmospheres, 2007, 112:D12107.
Li J F, Ye H P, Zhang Z K, et al. Spatiotemporal change analysis of Sri Lanka inland water based on Landsat imagery[J]. Journal of Geo-Information Science, 2019, 21(5):781-788.
[25]
Zhuang Y, Chen C. A method for water body extraction based on the tasselled cap transformation from remote sensing images[C]// 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA).IEEE, 2018:336-340.
Hong L, Huang Y J, Yang K, et al. Study on urban surface water extraction from heterogeneous environments using GF-2 remotely sensed images[J]. Journal of Remote Sensing, 2019, 23(5):871-882.
Yang Y Y. Research on water extraction and temporal and spatial dynamic change in Deyang City based on multi-source remote sensing data[D]. Chengdu: Sichuan Normal University, 2022.
Bai C, Xiang Y, Qiu C X, et al. Research on water extraction method based on multi-source remote sensing data[J]. Yellow River, 2021, 43(7):78-83.
[29]
Frazier P S, Page K J. Water body detection and delineation with Landsat TM data[J]. Photogrammetric Engineering and Remote Sensing:Journal of the American Society of Photogrammetry, 2000, 66(12):1461-1467.
Bi H Y, Wang S Y, Zeng J Y, et al. Comparison and analysis of several common water extraction methods based on TM image[J]. Remote Sensing Information, 2012, 27(5):77-82.
Du Y Y, Zhou C H. Automatically extracting remote sensing information for water bodies[J]. National Remote Sensing Bulletin, 1998, 2(4):364-369.
[32]
Chen C, Chen H, Liang J, et al. Extraction of water body information from remote sensing imagery while considering greenness and wetness based on tasseled cap transformation[J]. Remote Sensing, 2022, 14(13):3001.
[33]
McFeeters S K. The use of the normalized difference water index(NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
Yan P, Zhang Y J, Zhang Y. A study on information extraction of water system in semi-arid regions with the enhanced water index (EWI) and GIS based noise remove techniques[J]. Remote Sensing Information, 2007, 22(6):62-67.
Ding F. A new method for fast information extraction of water bodies using remotely sensed data[J]. Remote Sensing Technology and Application, 2009, 24(2):167-171.
[37]
Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140:23-35.
[38]
Fisher A, Flood N, Danaher T. Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016, 175:167-182.
Wang X B, Xie S P, Du J K. Water index formulation and its effectiveness research on the complicated surface water surroundings[J]. Journal of Remote Sensing, 2018, 22(2):360-372.
Deng K Y, Ren C. Water extraction model of multispectral optical remote sensing image[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10):1370-1379.
doi: 10.11947/j.AGCS.2021.20200482
Lei S L, Zhang P F, Wang X P, et al. Study on water index construction based on Landsat8 data[J]. Advances in Applied Mathematics, 2022, 11(3):1178-1186.
Wu Q S, Wang M X, Shen Q, et al. Small water body extraction method based on Sentinel-2 satellite multi-spectral remote sensing image[J]. National Remote Sensing Bulletin, 2022, 26(4):781-794.
Wang C X, Zhang J, Li Y X, et al. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3):50-58.doi:10.6046/zrzyyg.2021227.
[44]
Niu L, Kaufmann H, Xu G, et al. Triangle water index (TWI):An advanced approach for more accurate detection and delineation of water surfaces in Sentinel-2 data[J]. Remote Sensing, 2022, 14(21):5289.
Zhang C C, Lou Y, Li Y, et al. Change of vegetation coverage in Funiu Mountain regions based on the dimidiate pixel model[J]. Research of Soil and Water Conservation, 2020, 27(3):301-307.
Li W P. Study on extraction method of inland surface water body based on pixel unmixing:A case study of different water body types in the Yellow River basin[D]. Xi'an: Northwest University, 2017.
Lai P Y, Chen H N, Huang C. Study on the suitability of dimidiate pixel model in surface water detection of MODIS at sub-pixel level[J]. Journal of Geomatics, 2019, 44(6):56-59.
Chen J J, Liu R, Yang X, et al. Water information extraction based on improved Otsu and morphology[J]. Remote Sensing Information, 2022, 37(1):101-109.
Jia Y L, Zhang W, Meng L K. A study of selection method of NDWI segmentation threshold for GF-1 image[J]. Remote Sensing for Land and Resources, 2019, 31(1):95-100.doi:10.6046/gtzyyg.2019.01.13.
Yu Y F, Pan J, Xing L X, et al. Identification of high temperature targets in remote sensing imagery based on Mahalanobis distance[J]. Remote Sensing Information, 2013, 28(5):90-94.
Yin Y Q, Li J G, Yu T, et al. The study of object-oriented water body extraction method based on high resolution RS image[J]. Bulletin of Surveying and Mapping, 2015(1):81-85.
doi: 10.13474/j.cnki.11-2246.2015.0016
[55]
Song J, Gao S H, Zhu Y Q, et al. A survey of remote sensing image classification based on CNNs[J]. Big Earth Data, 2019, 3(3):232-254,
[56]
Vapnik V N. The nature of statistical learning theory[M]. Berlin: Springer Science and Business Media, 1999.
Tang S L. Research on remote sensing image prospecting prediction and mapping method based on multi-scale analysis and machine learning[D]. Xi'an: Chang'an University, 2021.
[58]
Paul A, Tripathi D, Dutta D. Application and comparison of advanced supervised classifiers in extraction of water bodies from remote sensing images[J]. Sustainable Water Resources Management, 2018, 4(4):905-919.
Duan Q Y, Meng L K, Fan Z W, et al. Applicability of the water information extraction method based on GF-1 image[J]. Remote Sensing for Land and Resources, 2015, 27(4):79-84.doi:10.6046/gtzyyg.2015.04.13.
Han W L. Research on remote sensing information extraction algorithm of tiny water body based on TransUNet[D]. Langfang: North China Institute of Aerospace Engineering, 2022.
Dong Z, Wang L, Zhu X C, et al. Water extraction in mountainous area based on spectral model and object-oriented method[J]. Remote Sensing Information, 2022, 37(4):121-127.
Wang X, Xu M J, Xiao J, et al. Water body extraction from high resolution remote sensing images based on fused visual word bags[J]. Journal of System Simulation, 2022, 34(5):1033-1043.
doi: 10.16182/j.issn1004731x.joss.20-0977
[63]
杨佳佳. 基于多源遥感数据的青海格尔木地区岩矿信息提取研究[D]. 长春: 吉林大学, 2012.
Yang J J. Study on the extraction of mineral information in Geermu of Qinghai Province based on multi-source remote sensing data[D]. Changchun: Jilin University, 2012.
[64]
Xu K, Wang X F, Kong C F, et al. Identification of hydrothermal alteration minerals for exploring gold deposits based on SVM and PCA using ASTER data:A case study of Gulong[J]. Remote Sensing, 2019, 11(24):3003.
Chen J B, Liu S X, Wang C Y, et al. Research on urban water body extraction using knowledge-based decision tree[J]. Remote Sensing Information, 2013, 28(1):29-33,37.
Chen Y H, Zhang W C. GIS supported decision tree classification of remote sensing images in mountainous areas[J]. Remote Sensing for Land and Resources, 2006, 18(1):69-74.doi:10.6046/gtzyyg.2006.01.16.
Hu W G, Meng L K, Zhang D Y, et al. Methods of water extraction from ZY-1 02C satellite imagery[J]. Remote Sensing for Land and Resources, 2014, 26(2):43-47.doi:10.6046/gtzyyg.2014.02.08.
[68]
Belgiu M, Drăguţ L. Random forest in remote sensing:A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31.
Zhao S H, Duan H C, Gao S, et al. Water classification of MODIS remote sensing image based on random forests[J]. Journal of Shandong Normal University(Natural Science), 2018, 33(1):19-25.
[70]
王杰. 基于面向对象分类和CNN的土地覆盖遥感提取[D]. 合肥: 安徽大学, 2020.
Wang J. Remote sensing based extraction of land cover using object-oriented classification and CNN[D]Hefei: Anhui University, 2020.
[71]
Kaplan G, Avdan U. Object-based water body extraction model using Sentinel-2 satellite imagery[J]. European Journal of Remote Sensing, 2017, 50(1):137-143.
[72]
Chen G Y, Cai Z H, Li X. Recognition and classification of high resolution remote sensing image based on convolutional neural network[J]. International Journal of Performability Engineering, 2018, 14(11):2852-2863.
Lin L. Satellite image time series classification and change detection based on recurrent neural network model[D]. Beijing: University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth), 2018.
Li J, Zhong L H, Xing W Y. Object detection in ship remote sensing images based on convolutional neural networks[J]. Ship Science and Technology, 2022, 44(7):146-149.
[75]
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE, 2015:3431-3440.
[76]
Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Cham:Springer, 2015:234-241.
[77]
Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
[78]
Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
[79]
Zhao H S Shi, J P, Qi X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2017:6230-6239.
He H Q, Du J, Chen T, et al. Remote sensing image water body extraction combing NDWI with convolutional neural network[J]. Remote Sensing Information, 2017, 32(5):82-86.
Wang N, Cheng J H, Zhang H Y, et al. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land and Resources, 2020, 32(1):35-42.doi:10.6046/gtzyyg.2020.01.06.
Zheng T H, Wang Q T, Li J G, et al. Automatic water extraction from GF-6 image based on deep learning[J]. Science Technology and Engineering, 2021, 21(4):1459-1470.
Shen J A, Ma M T, Song Z Y, et al. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4):129-135.doi:10.6046/zrzyyg.2021357.
Zhang M F, Gao G W, Hu J F, et al. Water extraction from remote sensing images based on CNN[J]. Transducer and Microsystem Technologies, 2022, 41(1):72-74,88.
[85]
Guo H X, He G J, Jiang W, et al. A multi-scale water extraction convolutional neural network (MWEN) method for GaoFen-1 remote sensing images[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):189.
[86]
Yu Y T, Yao Y T, Guan H Y, et al. A self-attention capsule feature pyramid network for water body extraction from remote sensing imagery[J]. International Journal of Remote Sensing, 2021, 42(5):1801-1822.
Sun N, Gao Z Q, Wang X J, et al. High-precise extraction for water on the Loess Plateau region from high resolution satellite image[J]. Remote Sensing for Land and Resources, 2017, 29(4):173-178.doi:10.6046/gtzyyg.2017.04.26.
[88]
Wu B, Zhang J, Zhao Y. A novel method to extract narrow water using a top-hat white transform enhancement technique[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(3):391-400.
[89]
Li Q W, Lan H X, Zhao X X, et al. River centerline extraction using the multiple direction integration algorithm for mixed and pure water pixels[J]. GIScience and Remote Sensing, 2019, 56(2):256-281.
[90]
Zhang Y, Jin R, Zhou Z H. Understanding bag-of-words model:A statistical framework[J]. International Journal of Machine Learning and Cybernetics, 2010, 1(1):43-52.
[91]
Lian S, Chen J, Luo M. A probability-based statistical method to extract water body of TM images with missing information[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016,XLI-B2:21-26.
[92]
Zhang X R, Xu W B, Hu Y, et al. Extracting land surface water from FY/MERSI image based on spectral matching of discrete particle swarm optimization and linear feature enhancement[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019: 6887-6890.
[93]
Yue H, Li Y, Qian J X, et al. A new accuracy evaluation method for water body extraction[J]. International Journal of Remote Sensing, 2020, 41(19):7311-7342.
[94]
王小娜, 田金炎, 李小娟, 等. Google Earth Engine云平台对遥感发展的改变[J]. 遥感学报, 2022, 26(2):299-309.
Wang X N, Tian J Y, Li X J, et al. Benefits of Google Earth Engine in remote sensing[J]. National Remote Sensing Bulletin, 2022, 26(2):299-309.