Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 1-13    DOI: 10.6046/zrzyyg.2022408
  综述 本期目录 | 过刊浏览 | 高级检索 |
土壤水分多源卫星遥感联合反演研究进展
蒋瑞瑞1,2,3(), 甘甫平1(), 郭艺1, 闫柏琨1
1.中国自然资源航空物探遥感中心,北京 100083
2.中国地质大学(北京)中国地质科学院,北京 100083
3.中国地质科学院,北京 100083
Progress in research on the joint inversion for soil moisture using multi-source satellite remote sensing data
JIANG Ruirui1,2,3(), GAN Fuping1(), GUO Yi1, YAN Bokun1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Chinese Academy of Geological Sciences, China University of Geosciences(Beijing), Beijing 100083, China
3. Chinese Academy of Geological Sciences, Beijing 100083, China
全文: PDF(3160 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

土壤水分与全球气候变化、碳循环、水循环等过程,以及农业生产、生态保护修复等环节密切相关。土壤水分的探测经历了从地面测量到遥感探测的发展过程,实现了全球及区域尺度的调查监测。由于数据谱段不一、辐射传输机制不同、反演算法多样,需从算法机理、优势、局限等角度进行全面分析,为精度提升、算法改进提供基础。为此,该文从光学遥感、微波遥感、光学微波协同3个方面,系统梳理了光学遥感温度-植被指数空间特征、温度-地表短波净辐射时间特征反演土壤水分,被动、主动微波反演和主、被动微波遥感联合反演,以及基于精度改善和时空尺度转化的光学微波协同反演等技术方法的特点、存在的问题。目前,多源遥感数据联合反演土壤水分主要存在如下问题: ①数据存在缺失及时空尺度不匹配问题; ②不同数据源对地表穿透性不一致; ③联合反演模型依赖于经验参数和大量辅助参数。随着卫星监测网络的完善、数据源对地表探测深度研究的深入,以及联合反演物理机理的明确、辅助参数时空连续数据集的建立,上述问题会得到有效解决。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋瑞瑞
甘甫平
郭艺
闫柏琨
关键词 土壤水分多源遥感光学遥感微波遥感联合反演    
Abstract

Soil moisture is closely associated with global climate change, the carbon cycle, and the water cycle, as well as agricultural production and ecological conservation and restoration. The detection of soil moisture has shifted from ground survey to remote sensing detection, achieving global- and regional-scale survey and monitoring. Given differences in data spectrum segments, radiative transfer mechanisms, and inversion algorithms, it is necessary to comprehensively analyze the mechanisms, advantages, and limitations of algorithms, with the purpose of laying a foundation for accuracy and algorithm improvement. From the aspects of optical remote sensing, microwave remote sensing, and optic-microwave cooperation, this study systematically analyzed the features and challenges of the following inversion techniques: inversion based on the Ts-VI spatial and Ts-NSSR temporal characteristics of optical remote sensing data, inversion using passive and active microwave data, joint inversion using active and passive microwave data and remote sensing data, and optical-microwave cooperative inversion based on accuracy improvement and spatio-temporal transformation. At present, the joint inversion of soil moisture using multi-source remote sensing data faces the following challenges: ① The data suffer missing and spatio-temporal mismatching; ② Different data sources exhibit varying degrees of surface penetration; ③ The joint inversion model relies on empirical parameters and numerous auxiliary parameters. These challenges can be addressed with the improvement in the satellite monitoring network, the increase in the surface detection depths of data sources, the clarification of the physical mechanisms of joint inversion, and the establishment of spatio-temporal continuous datasets of auxiliary parameters.

Key wordssoil moisture    multi-source remote sensing    optical remote sensing    microwave remote sensing    joint inversion
收稿日期: 2022-10-20      出版日期: 2024-03-13
ZTFLH:  TP79  
基金资助:国家重点研发计划课题“长江和黄河三角洲生态环境演化过程和机制研究”(2019YFE0127200-4);中国地质调查局项目“流域水循环要素与自然资源遥感调查监测”(DD20221642);“高分遥感地质环境综合应用示范”(300012000000194286)
通讯作者: 甘甫平(1971-),男,博士,研究员,主要从事遥感技术方法及地学应用研究。Email: fpgan@aliyun.com
作者简介: 蒋瑞瑞(1999-),女,硕士研究生,主要从事微波遥感反演土壤水分研究。Email: jjrr3636@163.com
引用本文:   
蒋瑞瑞, 甘甫平, 郭艺, 闫柏琨. 土壤水分多源卫星遥感联合反演研究进展[J]. 自然资源遥感, 2024, 36(1): 1-13.
JIANG Ruirui, GAN Fuping, GUO Yi, YAN Bokun. Progress in research on the joint inversion for soil moisture using multi-source satellite remote sensing data. Remote Sensing for Natural Resources, 2024, 36(1): 1-13.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022408      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/1
特征指数 构成特征空间变量 算法 与土壤水分关系及适用条件 参考文献
温度植被干旱指数(temperature-vegetation dryness index,TVDI) Ts,NDVI TVDI= T s - T s m i n ( N D V I ) T s m a x ( N D V I ) - T s m i n ( N D V I )
Tsmin=bmin+aminNDVI
Tsmax=bmax+amaxNDVI
与土壤水分呈显著负相关,适用于覆盖度较好区域,不适用于稀疏植被覆盖区域 [21]
温度变化速率-植被干旱指数(temperature rate-vegetation dryness index,TRVDI) RT,FVC TRVDI= R T m a x ( i ) - R T ( i ) R T m a x ( i ) - R T m i n
RTmax=a+bFVCi
与土壤水分呈显著负相关,适用于所有植被覆盖情况。RT基于地球同步轨道数据计算,适合用于监测地表土壤水分的时间变化情况 [22]
条件温度植被指数(temperature vegetation difference index,VTCI) Ts, NDVI VTCI= T s N D V I i m a x - T s N D V I i T s N D V I i m a x - T s N D V I i m i n T s N D V I i m a x=a+bNDVIi
T s N D V I i m i n=a'+b'NDVIi
与土壤水分呈显著正相关,适用于中高植被覆盖区域 [23]
土壤水分指数(soil water index,SWI) Ts, NDVI SWI= T s m a x ( i ) - T s ( i ) T s m a x ( i ) - T s m i n T s m a x ( i )=a+bNDVIi 与土壤水分呈显著正相关,适用于中等植被覆盖度区域 [24]
土壤水分亏缺指数(water deficit index,WDI) Ts -Ta,SAVI WDI= ( T s - T a ) m i n - ( T s - T a ) r ( T s - T a ) m i n - ( T s - T a ) m a x 与土壤水分呈显著负相关,适用于所有植被覆盖区域 [25]
热地表覆盖水分指数(thermal ground cover moisture index,TGMI) TIRDC, FVC TGMI= T I R D C n o r m , m a x , i - T I R D C n o r m , i T I R D C n o r m , m a x , i - T I R D C n o r m , m i n
TIRDCnorm,max,i= F V C i + F V C d T I R D C n o r m , d - 1 F V C d T I R D C n o r m , d - 1
TIRDCnorm,i= T I R D C i - T I R D C m i n T I R D C m a x - T I R D C m i n
与土壤水分呈显著正相关,适用于农业干旱监测,能较好表现出旱地和灌溉区域的土壤水分空间差异 [26]
土壤水分有效值(M0) Ts,FVC M0= T d r y - T s T d r y - T w e t
Tdry=( T c m a x- T s m a xFVC+ T s m a x
Twet=( T c m i n- T s m i nFVC+ T s m i n
与土壤水分呈显著正相关,适用于所有植被覆盖区域 [27]
垂直土壤水分指数(perpendicular soil moisture index,PSMI) Ts,NDVI PSMIi=Di/(1+NDVIi)
Di=(TIRi,norm+NDVIi)/ 2
与土壤水分呈显著负相关,适用于估算农田土壤水分 [28-29]
Tab.1  基于Ts-VI特征空间构建的常用指数
Fig.1  晴空条件NSSRTs日变化状况
Fig.2  NSSR与TS日变化椭圆关系及参数示意图
效应 参数化方案 L-MEB算法 SCA算法 参考文献
植被效应 植被模型 τ-ω模型 τ-ω模型 [51]
等效反照率 ωV=ωH=ω
ω=0.06北方森林
ω=0.08(亚)热带森林
ωV=ωH=ω
ω=0.05森林
[52]
植被光学厚度 τNAD作为位置参数,和土壤水分同时
反演
τNAD初始值
τini=f(LAI)
τNAD=bVWC
b=f(IGBP)
b=0.10-0.12
VWC=f(NDVI,IGBP)
[53-54]
植被结构对τ影响 结构校正参数ttP
ttV=tth=1
τv=τh (观测角=40°) [55-56]
等效地表温度 TG=f(Tsoil,surf ,Tsoil,deep ) TG=f(Tsoil,surf,Tsoil,deep) [57-58]
植被温度 ECMWF表层土壤温度 TC=TG [50]
粗糙度效应 地表粗糙度 H-Q-N模型
H=0.3森林
Q=0; Nv=0,Nh=2
H-Q-N模型
H=0.16森林
Q=0; Nv=Nh=2
[57?-59]
计算土壤水分 土壤介电模型 2012年4月前
Dobson模型
2012年4月后
Mironov模型
eG=f S M , T G , % ? c l a y
Mironov模型



eG=f(SM,TG,% clay)
[60]
Tab.2  被动微波土壤水分反演方法参数化方案(修改自[50])
主动微波地
表散射模型
基本原理 参数适用范围 参考
文献
半经验模型 Oh 根据散射理论建立后向散射系数、极化比、交叉极化比与土壤水分、地表粗糙度参数的经验公式 10°θ≤70°
0.13<ks<6.98
0.04<SM≤0.291
[66]
Dubois 根据散射理论建立同极化后向散射系数与介电常数、粗糙度参数、雷达入射角之间的半经验关系,结合介电模型得到土壤水分 kl>6
s/l<0.25
SM≤0.35
1.5 GHz<f
<11 GHz
[63]
Shi 根据散射理论建立同极化后向散射系数与介电常数、粗糙度谱、极化幅度之间的半经验关系,结合介电模型得到土壤水分 25°≤θ≤70°
0.2<ks<3.6
2.5<kl<35
0.02<SM<0.5
[64]
物理散射模型 GOM 基于基尔霍夫模型的驻留相位近似法 (2kscosθ)2>10
kl>6
l2>2.76
[67]
POM 基于基尔霍夫模型的标量近似法 kl>6
s/l<0.25
[68]
SPM 微扰理论 ks<0.3
kl<3
s/l<0.3
[69]
IEM 基尔霍夫切面场上引入补偿场 ks<3
s/l<0.3
[70]
AIEM 在IEM基础上增加更加完整的多次散射项 ks<3
0.05<s/l<0.5
[71]
Tab.3  主动微波反演土壤水分模型(修改自[65])
Fig.3  光学与微波联合反演土壤水分流程
方法 原理 公式/模型 参考文献
多元回归统计法 将土壤水分分解成多种高分辨率特征变量的多项式 SM= i = 0 2 j = 0 2 k = 0 2aijkNDVIiTjAk [87]
物理模型法 建立高分辨率环境参数(常用土壤蒸发效率)与土壤水分的转化关系 SM=SMCR+ ? S E E ? S M C R - 1×(SEEHR-SEECR) [88]
权重分解法 通过土壤水分相关的高、低分辨率辅助数据计算降尺度的权重因子 SM=SWICR S W I H R S W I C R [89]
机器学习 挖掘高分辨率辅助数据与低分辨率数据的非线性关系和内在关联特征 神经网络、支持向量机、随机森林 [90?-92]
Tab.4  光学-微波协同降尺度主要方法
微波数据
及分辨率
光学数据
及分辨率
所用方法 降尺度后
分辨率
RMSE/
(cm3·cm-3)
参考
文献
SMOS
40 km
MODIS(Ts,VI)500 m 多元回归统计法 500 m 0.04 [98]
SMAP
36 km
MODIS(VI)1 km
Sentinel-3(Ts)1 km
物理模型法 1 km 0.04~0.11 [99]
FY-3B
25 km
MODIS(Ts,VI)
1 km
权重分解法 1 km 0.11 [100]
SMAP
9 km
MODIS(Ts)1 km
MODIS(反射率)500 m
机器学习 3 km 0.04 [101]
Tab.5  光学-微波协同降尺度应用举例
[1] 李明, 孙洪泉, 苏志诚. 中国西北气候干湿变化研究进展[J]. 地理研究, 2021, 40(4):1180-1194.
doi: 10.11821/dlyj020200328
Li M, Sun H Q, Su Z C. Research progress in dry/wet climate variation in Northwest China[J]. Geographical Research, 2021, 40(4):1180-1194.
doi: 10.11821/dlyj020200328
[2] Nocita M, Stevens A, Noon C, et al. Prediction of soil organic carbon for different levels of soil moisture using VIS-NIR spectroscopy[J]. Geoderma, 2013, 199:37-42.
doi: 10.1016/j.geoderma.2012.07.020
[3] 陈洪松, 邵明安. 黄土区坡地土壤水分运动与转化机理研究进展[J]. 水科学进展, 2003, 14(4):413-420.
Chen H S, Shao M A. Review on hillslope soil water movement and transformation mechanism on the loess plateau[J]. Advances in Water Science, 2003, 14(4):413-420.
[4] 王勇. 松嫩平原北部农作物土壤水分有效性模拟及干旱评估研究[D]. 哈尔滨: 哈尔滨师范大学, 2021.
Wang Y. Simulation of crop soil water availability and drought assessment in the northen Songnen plain[D]. Harbin:Harbin Normal University, 2021.
[5] Wang C, Fu B, Zhang L, et al. Soil moisture-plant interactions:An ecohydrological review[J]. Journal of Soils and Sediments, 2019, 19(1):1-9.
doi: 10.1007/s11368-018-2167-0
[6] 周宏. 干旱区包气带土壤水分运移能量关系及驱动力研究评述[J]. 生态学报, 2019, 39(18):6586-6597.
Zhou H. Review of studies on the relationship between soil water movement and energy and their driving forces in the vadose zone of arid regions[J]. Acta Ecologica Sinica, 2019, 39(18):6586-6597.
[7] David Suits L, Sheahan T C, Sreedeep S, et al. Measuring soil electrical resistivity using a resistivity box and a resistivity probe[J]. Geotechnical Testing Journal, 2004, 27(4):11199.
[8] Topp G C, Zebchuk W D, Davis J L, et al. The measurement of soil water content using a portable tdr hand probe[J]. Canadian Journal of Soil Science, 1984, 64(3):313-321.
doi: 10.4141/cjss84-033
[9] Mittelbach H, Lehner I, Seneviratne S I. Comparison of four soil moisture sensor types under field conditions in Switzerland[J]. Journal of Hydrology, 2012, 430/431:39-49.
doi: 10.1016/j.jhydrol.2012.01.041
[10] Li Z L, Leng P, Zhou C, et al. Soil moisture retrieval from remote sensing measurements:Current knowledge and directions for the future[J]. Earth-Science Reviews, 2021, 218:103673.
doi: 10.1016/j.earscirev.2021.103673
[11] Lievens H, Reichle R H, Liu Q, et al. Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates[J]. Geophysical Research Letters, 2017, 44(12):6145-6153.
doi: 10.1002/2017GL073904 pmid: 29657343
[12] Leng P, Li Z L, Liao Q Y, et al. Determination of all-sky surface soil moisture at fine spatial resolution synergistically using optical/thermal infrared and microwave measurements[J]. Journal of Hydrology, 2019, 579:124167.
doi: 10.1016/j.jhydrol.2019.124167
[13] Das N N, Entekhabi D, Dunbar R S, et al. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product[J]. Remote Sensing of Environment, 2019, 233:111380.
doi: 10.1016/j.rse.2019.111380
[14] Wang H, Magagi R, Goïta K, et al. Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan Plateau[J]. Remote Sensing of Environment, 2020, 251:112100.
doi: 10.1016/j.rse.2020.112100
[15] 王俊霞, 潘耀忠, 朱秀芳, 等. 土壤水分反演特征变量研究综述[J]. 土壤学报, 2019, 56(1):23-35.
Wang J X, Pan Y Z, Zhu X F, et al. A review of researches on inversion of eigenvariance of soil water[J]. Acta Pedologica Sinica, 2019, 56(1):23-35.
[16] 刘焕军, 张柏, 杨立, 等. 土壤光学遥感研究进展[J]. 土壤通报, 2007, 38(6):1196-1202.
Liu H J, Zhang B, Yang L, et al. Review of soil optical remote sensing[J]. Chinese Journal of Soil Science, 2007, 38(6):1196-1202.
[17] Maltese A, Capodici F, Corbari C, et al. Critical analysis of the thermal inertia approach to map soil water content under sparse vegetation and changeable sky conditions[C]// Proceeding of SPIE 8531,Remote Sensing for Agriculture,Ecosystems,and Hydrology XIV, 2012, 8531:186-195.
[18] Petropoulos G P, Srivastava P K, Ferentinos K P, et al. Evaluating the capabilities of optical/TIR imaging sensing systems for quantifying soil water content[J]. Geocarto International, 2020, 35(5):494-511.
doi: 10.1080/10106049.2018.1520926
[19] 吴学睿, 金双根, 宋叶志, 等. GNSS-R/IR土壤水分遥感研究现状[J]. 大地测量与地球动力学, 2019, 39(12):1277-1282.
Wu X R, Jin S G, Song Y Z, et al. Progress on soil moisture monitoring with GNSS-R/IR technique[J]. Journal of Geodesy and Geodynamics, 2019, 39(12):1277-1282.
[20] Moran M S, Jackson R D, Slater P N, et al. Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output[J]. Remote Sensing of Environment, 1992, 41(2/3):169-184.
doi: 10.1016/0034-4257(92)90076-V
[21] 孔婕, 李纯斌, 吴静. 草地土壤水分遥感反演方法的适用性[J]. 草业科学, 2020, 37(12):2463-2474.
Kong J, Li C B, Wu J. Applicability of remote sensing inversion models for estimating regional soil moisture in Chinese grasslands[J]. Pratacultural Science, 2020, 37(12):2463-2474.
[22] Zhao W, Labed J, Zhang X, et al. Surface soil moisture estimation from SEVIRI data onboard MSG satellite[C]// 2010 IEEE International Geoscience and Remote Sensing Symposium.Honolulu,HI,USA.IEEE, 2010:3865-3868.
[23] 樊彦国, 韩志聪, 丁智慧, 等. 基于MODIS数据的土壤湿度反演——以东营市为例[J]. 山东农业科学, 2016, 48(2):133-137.
Fan Y G, Han Z C, Ding Z H, et al. Inversion of soil moisture based on MODIS data—Taking Dongying City for example[J]. Shandong Agricultural Sciences, 2016, 48(2):133-137.
[24] 焦俏, 王飞, 李锐, 等. ERS卫星反演数据在黄土高原近地表土壤水分中的应用研究[J]. 土壤学报, 2014, 51(6):1388-1397.
Jiao Q, Wang F, Li R, et al. Application of inversion of European remote sensing satellites data to investigation of near-surface soil moisture in loess plateau[J]. Acta Pedologica Sinica, 2014, 51(6):1388-1397.
[25] Wang W, Huang D, Wang X G, et al. Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index[J]. Hydrology and Earth System Sciences, 2011, 15(5):1699-1712.
doi: 10.5194/hess-15-1699-2011
[26] Shafian S, Maas S J. Improvement of the trapezoid method using raw landsat image digital count data for soil moisture estimation in the Texas (USA) high Plains[J]. Sensors, 2015, 15(1):1925-1944.
doi: 10.3390/s150101925 pmid: 25602267
[27] Leng P, Li Z L, Duan S B, et al. A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:40-51.
doi: 10.1016/j.isprsjprs.2017.07.013
[28] Bidgoli R D, Koohbanani H, Keshavarzi A, et al. Measurement and zonation of soil surface moisture in arid and semi-arid regions using Landsat 8 images[J]. Arabian Journal of Geosciences, 2020, 13(17):826.
doi: 10.1007/s12517-020-05837-2
[29] Sanaz S. Estimation of soil moisture status in the Texas high plains using remote sensing[D]. Lubbock: Texas Tech University, 2014.
[30] Verstraeten W W, Veroustraete F, van der Sande C J, et al. Soil moisture retrieval using thermal inertia,determined with visible and thermal spaceborne data,validated for European forests[J]. Remote Sensing of Environment, 2006, 101(3):299-314.
doi: 10.1016/j.rse.2005.12.016
[31] 蔡庆空, 陶亮亮, 蒋瑞波, 等. 基于理论干湿边与改进TVDI的麦田土壤水分估算研究[J]. 农业机械学报, 2020, 51(7):202-209.
Cai Q K, Tao L L, Jiang R B, et al. Soil moisture estimation of wheat field based on theoretical dry-wet edge and improved TVDI[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7):202-209.
[32] Zhang D, Tang R, Zhao W, et al. Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature[J]. Remote Sensing, 2014, 6(4):3170-3187.
doi: 10.3390/rs6043170
[33] Przeź D K, Zawadzki J. Modification of the land surface temperature-vegetation index triangle method for soil moisture condition estimation by using SYNOP reports[J]. Ecological Indicators, 2020, 119:106823.
doi: 10.1016/j.ecolind.2020.106823
[34] 刘子琪, 郑杰, 朱忠礼, 等. 遥感反演土壤水分指数的适用性研究[J]. 地理科学研究, 2022(3):395-406.
Liu Z Q, Zheng J, Zhu Z L, et al. Applicability research of parameters in soil moisture inversion[J]. Geographical Science Research, 2022(3):395-406.
[35] 高琪, 彭杰, 冯春晖, 等. 基于Landsat8数据的荒漠土壤水分遥感反演[J]. 水土保持通报, 2021, 41(1):125-131,151.
Gao Q, Peng J, Feng C H, et al. A study on inversion for remote sensing of desert soil moisture based on Landsat8 data[J]. Bulletin of Soil and Water Conservation, 2021, 41(1):125-131,151.
[36] Wetzel P J, Atlas D, Woodward R H. Determining soil moisture from geosynchronous satellite infrared data:A feasibility study[J]. Journal of Climate and Applied Meteorology, 1984, 23(3):375-391.
doi: 10.1175/1520-0450(1984)023&lt;0375:DSMFGS&gt;2.0.CO;2
[37] Zhao W, Li Z L, Wu H, et al. Determination of bare surface soil moisture from combined temporal evolution of land surface temperature and net surface shortwave radiation[J]. Hydrological Processes, 2013, 27(19):2825-2833.
doi: 10.1002/hyp.v27.19
[38] Zhao W, Li Z L. Sensitivity study of soil moisture on the temporal evolution of surface temperature over bare surfaces[J]. International Journal of Remote Sensing, 2013, 34(9/10):3314-3331.
doi: 10.1080/01431161.2012.716532
[39] Leng P, Song X, Li Z L, et al. Bare surface soil moisture retrieval from the synergistic use of optical and thermal infrared data[J]. International Journal of Remote Sensing, 2014, 35(3):988-1003.
doi: 10.1080/01431161.2013.875237
[40] Leng P, Song X, Duan S B, et al. Preliminary validation of two temporal parameter-based soil moisture retrieval models using a satellite product and in situ soil moisture measurements over the REMEDHUS network[J]. International Journal of Remote Sensing, 2016, 37(24):5902-5917.
doi: 10.1080/01431161.2016.1253896
[41] Wang H, Magagi R, Goïta K, et al. Soil moisture retrieval over a site of intensive agricultural production using airborne radiometer data[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 97:102287.
doi: 10.1016/j.jag.2020.102287
[42] Jackson T J, Le Vine D M, Swift C T, et al. Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita’92[J]. Remote Sensing of Environment, 1995, 54(1):27-37.
doi: 10.1016/0034-4257(95)00084-E
[43] O’Neill P, Bindlish R, Chan S, et al. Algorithm theoretical basis document.Level 2 & 3 soil moisture (passive) data products[J]. 2018.
[44] Owe M, de Jeu R, Walker J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8):1643-1654.
doi: 10.1109/36.942542
[45] 覃湘栋, 庞治国, 江威, 等. 土壤水分微波反演方法进展和发展趋势[J]. 地球信息科学学报, 2021, 23(10):1728-1742.
doi: 10.12082/dqxxkx.2021.210104
Qin X D, Pang Z G, Jiang W, et al. Progress and development trend of soil moisture microwave remote sensing retrieval method[J]. Journal of Geo-Information Science, 2021, 23(10):1728-1742.
[46] Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research:Oceans, 1982, 87(C13):11229-11237.
[47] Wigneron J P, Kerr Y, Waldteufel P, et al. L-band microwave emission of the biosphere (L-MEB) model:Description and calibration against experimental data sets over crop fields[J]. Remote Sensing of Environment, 2007, 107(4):639-655.
doi: 10.1016/j.rse.2006.10.014
[48] 白瑜. 东北农田区被动微波遥感土壤水分产品验证研究[D]. 长春: 吉林大学, 2018.
Bai Y. Evaluation of passive microwave remote sensing soil moisture products over an agricultural area in Northeast China[D]. Changchun: Jilin University, 2018.
[49] 靳梦杰. 林下土壤水分微波遥感反演关键技术研究[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019.
Jin M J. Key techniques for microwave remote sensing soil moisture retrieval under forest[D]. Harbin:Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences, 2019.
[50] Wigneron J P, Jackson T J, O’Neill P, et al. Modelling the passive microwave signature from land surfaces:A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[J]. Remote Sensing of Environment, 2017, 192:238-262.
doi: 10.1016/j.rse.2017.01.024
[51] Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research:Oceans, 1982, 87(C13):11229-11237.
[52] Kurum M. Quantifying scattering albedo in microwave emission of vegetated terrain[J]. Remote Sensing of Environment, 2013, 129:66-74.
doi: 10.1016/j.rse.2012.10.021
[53] Lindau R. CSP-algorithm theoretical basis document (ATBD) WP 8317-soil moisture[J]. Initial Release, 2015,3.
[54] Kerr Y H, Waldteufel P, Richaume P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1384-1403.
doi: 10.1109/TGRS.2012.2184548
[55] Ulaby F T, Wilson E A. Microwave attenuation properties of vegetation canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(5):746-753.
doi: 10.1109/TGRS.1985.289393
[56] Allen C, Ulaby F. Modelling the polarization dependence of the attenuation in vegetation canopies[C]. Proceedings of the Proceedings of the IGARSS,F,1984.
[57] Wigneron J P, Laguerre L, Kerr Y H. A simple parameterization of the L-band microwave emission from rough agricultural soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(8):1697-1707.
doi: 10.1109/36.942548
[58] Choudhury B J, Schmugge T J, Mo T. A parameterization of effective soil temperature for microwave emission[J]. Journal of Geophysical Research:Oceans, 1982, 87(C2):1301-1304.
[59] Escorihuela M J, Kerr Y H, de Rosnay P, et al. A simple model of the bare soil microwave emission at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7):1978-1987.
doi: 10.1109/TGRS.2007.894935
[60] Mironov V, Kerr Y, Wigneron J P, et al. Temperature- and texture-dependent dielectric model for moist soils at 1.4 GHz[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3):419-423.
doi: 10.1109/LGRS.2012.2207878
[61] Oh Y, Sarabandi K, Ulaby F T. An empirical model and an inversion technique for radar scattering from bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):370-381.
doi: 10.1109/36.134086
[62] 戴玉玲. 基于双极化数据的草原地表土壤水分反演研究[D]. 徐州: 中国矿业大学, 2019.
Dai Y L. Study on inversion of grassland soil moisture based on dual polarization data[D]. Xuzhou: China University of Mining and Technology, 2019.
[63] Dubois P C, van Zyl J, Engman T. Measuring soil moisture with imaging radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4):915-926.
doi: 10.1109/36.406677
[64] Shi J, Wang J, Hsu A Y, et al. Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1254-1266.
doi: 10.1109/36.628792
[65] 邓小东, 王宏全. 土壤水分微波遥感反演算法及应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3):289-302.
Deng X D, Wang H Q. Recent advances on algorithms and applications of soil moisture retrieval from microwave remote sensing[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3):289-302.
[66] Oh Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):596-601.
doi: 10.1109/TGRS.2003.821065
[67] Stogryn A. Electromagnetic scattering from rough,finitely conducting surfaces[J]. Radio Science, 1967, 2(4):415-428.
doi: 10.1002/rds.1967.2.issue-4
[68] Ulaby F, Moore R K, Fung A K. Microwave remote sensing:Active and passive,volumn 3:From theory to applications[M]. Norwood, MA: Artech House,1986.
[69] Rice S O. Reflection of electromagnetic waves from slightly rough surfaces[J]. Communications on Pure and Applied Mathematics, 1951, 4(2/3):351-378.
doi: 10.1002/cpa.v4:2-3
[70] Fung A K, Li Z, Chen K S. Backscattering from a randomly rough dielectric surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):356-369.
doi: 10.1109/36.134085
[71] Zhang X, Tang X, Gao X, et al. Soil moisture estimation based on the AIEM for bare agricultural area[C]// IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium.Waikoloa,HI,USA.IEEE, 2020:4723-4726.
[72] 关韵桐. 基于SAR与光学数据的高原湿地土壤水分反演研究——以大山包湿地为例[D]. 昆明: 云南师范大学, 2019.
Guan Y T. Inversion of soil moisture in plateau wetland based on SAR and optical data[D]. Kunming: Yunnan Normal University, 2019.
[73] Fung A K, Chen K S. An update on the IEM surface backscattering model[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2):75-77.
doi: 10.1109/LGRS.2004.826564
[74] Chen K S, Wu T D, Tsang L, et al. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(1):90-101.
doi: 10.1109/TGRS.2002.807587
[75] Kornelsen K C, Coulibaly P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications[J]. Journal of Hydrology, 2013, 476:460-489.
doi: 10.1016/j.jhydrol.2012.10.044
[76] Han L, Wang C, Yu T, et al. High-precision soil moisture mapping based on multi-model coupling and background knowledge,over vegetated areas using Chinese GF-3 and GF-1 satellite data[J]. Remote Sensing, 2020, 12(13):2123.
doi: 10.3390/rs12132123
[77] Zribi M, Gorrab A, Baghdadi N, et al. Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):848-852.
doi: 10.1109/LGRS.2013.2279893
[78] Shen X, Mao K, Qin Q, et al. Bare surface soil moisture estimation using double-angle and dual-polarization L-band radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):3931-3942.
doi: 10.1109/TGRS.2012.2228209
[79] Zhang L, Meng Q, Yao S, et al. Soil moisture retrieval from the Chinese GF-3 satellite and optical data over agricultural fields[J]. Sensors, 2018, 18(8):2675.
doi: 10.3390/s18082675
[80] 耿德源, 赵天杰, 施建成, 等. 地基雷达的微波面散射模型对比与土壤水分反演[J]. 遥感学报, 2021, 25(4):929-940.
Geng D Y, Zhao T J, Shi J C, et al. Surface microwave scattering model evaluation and soil moisture retrieval based on ground-based radar data[J]. National Remote Sensing Bulletin, 2021, 25(4):929-940.
doi: 10.11834/jrs.20219305
[81] O’Neill P E, Chauhan N S, Jackson T J. Use of active and passive microwave remote sensing for soil moisture estimation through corn[J]. International Journal of Remote Sensing, 1996, 17(10):1851-1865.
doi: 10.1080/01431169608948743
[82] 武胜利. 基于TRMM的主被动微波遥感结合反演土壤水分算法研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2006.
Wu S L. Study on combined active/passive microwave remote sensing approach for soil moisture retrieval with TRMM data[D]. Beijing: Chinese Academy of Sciences(Institute of Remote Sensing Applications), 2006.
[83] Santi E, Paloscia S, Pettinato S, et al. On the synergy of SMAP,AMSR2 and Sentinel-1 for retrieving soil moisture[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 65:114-123.
doi: 10.1016/j.jag.2017.10.010
[84] Attema E P W, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2):357-364.
doi: 10.1029/RS013i002p00357
[85] Ulaby F T, Sarabandi K, McDonald K, et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990, 11(7):1223-1253.
doi: 10.1080/01431169008955090
[86] 马腾, 韩玲, 刘全明. 考虑地表粗糙度改进水云模型反演西班牙农田地表土壤含水率[J]. 农业工程学报, 2019, 35(24):129-135.
Ma T, Han L, Liu Q M. Inversion of surface soil moisture content of Spanish farmland using modified water cloud model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24):129-135.
[87] Chauhan N S, Miller S, Ardanuy P. Spaceborne soil moisture estimation at high resolution:A microwave-optical/IR synergistic approach[J]. International Journal of Remote Sensing, 2003, 24(22):4599-4622.
doi: 10.1080/0143116031000156837
[88] Merlin O, Al Bitar A, Walker J P, et al. A sequential model for disaggregating near-surface soil moisture observations using multi-resolution thermal sensors[J]. Remote Sensing of Environment, 2009, 113(10):2275-2284.
doi: 10.1016/j.rse.2009.06.012
[89] Kim J, Hogue T S. Improving spatial soil moisture representation through integration of AMSR-E and MODIS products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):446-460.
doi: 10.1109/TGRS.2011.2161318
[90] Liu S F, Liou Y A, Wang W J, et al. Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6):1260-1268.
doi: 10.1109/TGRS.2002.800277
[91] Moran M S, Peters-Lidard C D, Watts J M, et al. Estimating soil moisture at the watershed scale with satellite-based radar and land surface models[J]. Canadian Journal of Remote Sensing, 2004, 30(5):805-826.
doi: 10.5589/m04-043
[92] Zhao W, Sánchez N, Lu H, et al. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression[J]. Journal of Hydrology, 2018, 563:1009-1024.
doi: 10.1016/j.jhydrol.2018.06.081
[93] Zhan X, Miller S, Chauhan N, et al. Soil moisture visible/infrared radiometer suite algorithm theoretical basis document[J]. Lanham,Md, 2002.
[94] Malbéteau Y, Merlin O, Molero B, et al. DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements:Application to SMOS and AMSR-E data in Southeastern Australia[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 45:221-234.
doi: 10.1016/j.jag.2015.10.002
[95] Molero B, Merlin O, Malbéteau Y, et al. SMOS disaggregated soil moisture product at 1 km resolution:Processor overview and first validation results[J]. Remote Sensing of Environment, 2016, 180:361-376.
doi: 10.1016/j.rse.2016.02.045
[96] 凌自苇, 何龙斌, 曾辉. 三种Ts/VI指数在UCLA土壤湿度降尺度法中的效果评价[J]. 应用生态学报, 2014, 25(2):545-552.
Ling Z W, He L B, Zeng H. Evaluating the performance of the UCLA method for spatially downscaling soil moisture products using three Ts/VI indices[J]. Chinese Journal of Applied Ecology, 2014, 25(2):545-552.
[97] 周壮, 赵少杰, 蒋玲梅. 被动微波遥感土壤水分产品降尺度方法研究综述[J]. 北京师范大学学报(自然科学版), 2016, 52(4):479-485.
Zhou Z, Zhao S J, Jiang L M. Downscaling methods of passive microwave remote sensing of soil moisture[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(4):479-485.
[98] Sánchez-Ruiz S, Piles M, Sánchez N, et al. Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates[J]. Journal of Hydrology, 2014, 516:273-283.
doi: 10.1016/j.jhydrol.2013.12.047
[99] Ojha N, Merlin O, Suere C, et al. Extending the spatio-temporal applicability of DISPATCH soil moisture downscaling algorithm:A study case using SMAP,MODIS and sentinel-3 data[J]. Frontiers in Environmental Science, 2021, 9:555216.
doi: 10.3389/fenvs.2021.555216
[100] 宋承运, 王艳丽. 风云三号土壤水分遥感产品降尺度方法对比分析[J]. 黑龙江工程学院学报, 2021, 35(3):13-16,32.
Song C Y, Wang Y L. A comparison study of FY-3B soil moisture downscaling methods[J]. Journal of Heilongjiang Institute of Technology, 2021, 35(3):13-16,32.
[101] Xu W, Zhang Z, Long Z, et al. Downscaling SMAP soil moisture products with convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:4051-4062.
doi: 10.1109/JSTARS.2021.3069774
[1] 卢献健, 张焕铃, 晏红波, 黎振宝, 郭子扬. 协同Sentinel-1/2多特征优选的甘蔗提取方法[J]. 自然资源遥感, 2024, 36(1): 86-94.
[2] 王煜淼, 李胜, 东春宇, 杨刚. 多特征参数支持的红树林遥感信息提取——以广东省为例[J]. 自然资源遥感, 2024, 36(1): 95-102.
[3] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[4] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[5] 赵华伟, 周林, 谭明伦, 汤明高, 童庆刚, 秦佳俊, 彭宇辉. 基于光学遥感和SBAS-InSAR的川渝输电网滑坡隐患早期识别[J]. 自然资源遥感, 2023, 35(4): 264-272.
[6] 张雨, 明冬萍, 赵文祎, 徐录, 赵治, 刘冉. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1): 161-170.
[7] 张淑, 周忠发, 王玲玉, 陈全, 骆剑承, 赵馨. 多时相SAR的喀斯特山区耕地表层土壤水分反演[J]. 自然资源遥感, 2022, 34(3): 154-163.
[8] 晏红波, 韦晚秋, 卢献健, 杨志高, 黎振宝. 基于高光谱特征的土壤含水量遥感反演方法综述[J]. 自然资源遥感, 2022, 34(2): 1-9.
[9] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[10] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[11] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[12] 宋承运, 胡光成, 王艳丽, 汤超. 基于表观热惯量与温度植被指数的FY-3B土壤水分降尺度研究[J]. 国土资源遥感, 2021, 33(2): 20-26.
[13] 董家集, 任华忠, 郑逸童, 聂婧, 孟晋杰, 秦其明. 基于多源遥感数据的城市环境宜居性研究——以北京市为例[J]. 国土资源遥感, 2020, 32(3): 165-172.
[14] 易佳思, 胡翔云. 基于Grabcut融合多源数据提取不透水面[J]. 国土资源遥感, 2018, 30(3): 174-180.
[15] 王阳明, 张景发, 刘智荣, 申旭辉. 基于多源遥感数据西藏山南地区活动断层解译[J]. 国土资源遥感, 2018, 30(3): 230-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发