Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (2): 46-53    DOI: 10.6046/gtzyyg.2020.02.07
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
内蒙古新巴尔虎右旗多金属矿区扬尘风积物遥感监测方法
宋国策, 张志()
中国地质大学(武汉)地球物理与空间信息学院,武汉 430074
Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia
Guoce SONG, Zhi ZHANG()
College of Geophysics and Spatial Information, China University of Geosciences(Wuhan), Wuhan 430074, China
全文: PDF(3837 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

内蒙古新巴尔虎右旗甲乌拉—查干铅锌银矿区地处呼伦贝尔草原腹部,当地半干旱的气候使得该矿区尾矿库、固体废弃物堆、矿石堆等易于产生扬尘,对周边草场产生污染。采用传统的化学采样和光谱分析调查矿区扬尘污染精度虽高,但费时耗力,而利用时序遥感方法监测矿区扬尘污染则比较便捷。本研究利用2018年GF-1卫星数据完成了矿区开发占地信息提取,在分析研究区的风场和最佳扬尘观测月份基础上,使用2000年、2005年、2010年、2015年和2018年获取的5期Landsat卫星数据,采取“扬尘风积物-植被-水体和阴影”端元分解模型和人工干预的半自动剔除道路干扰方法,对矿区扬尘风积物进行遥感监测; 相较于归一化差值植被指数(normalized difference vegetation index,NDVI)分析法,该方法在考虑植被光谱信息的同时也兼顾扬尘的光谱信息,使监测结果更为客观。比较5期遥感图像扬尘风积物提取结果发现,截止到2018年,矿区1 km缓冲区内扬尘风积物污染面积扩大到190.57 hm2,其中2000—2010年间和2010—2018年间的年平均增长面积分别为14.74 hm2和0.64 hm2。监测结果表明矿区采取的防治和治理措施可以明显改善扬尘风积物污染问题,但是随着矿区进一步开发,生态修复治理也应及时跟进。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋国策
张志
关键词 矿区扬尘风积物污染线性光谱混合模型NDVI时序监测    
Abstract

The Awula-Chagan lead-zinc-silver mine in Xin Barag Right Banner of Inner Mongolia is located in the abdomen of Hulunbuir grassland. Its semi-arid climate makes tailings ponds, solid waste piles and ore piles easily generate dust, polluting surrounding grassland. The traditional chemical sampling and spectral analysis investigate the high precision of the mining area but they are time-consuming and labor-intensive. It is convenient to use the time-series remote sensing method to monitor the dust pollution in the mining area. In this paper, GF-1 satellite data in 2018 were used to extract the information of the mining area in the study area. Based on an analysis of the wind field and the best observation month in the study area, the authors used the five-phase Landsat satellite data to adopt the end-element decomposition model of “dust accumulation-vegetation-water and shadow”, and used the method of semi-automatic elimination of road interference by manual intervention to remove the effects of roads. Compared with NDVI index analysis method, the proposed method considers the vegetation spectral information and takes into account the spectral information of the dust, thus making the monitoring effect more objective. A comparative study of 5 remote sensing image aeolian dust extractions found that, as of 2018, the mining area 1 km buffer aeolian dust contamination area expanded to 190.57 hm2, of which annual average growth area in 2000—2010 and 2010—2018 were 14.72 hm2 and 0.64 hm2, respectively. The monitoring results show that the prevention and control measures adopted in the mining area can significantly improve the pollution of dust and wind accumulations; nevertheless, with the further development of the mining area, ecological restoration and management should also be conducted in time.

Key wordsmining area    dust pollution    Linear Spectral Mixing Model    NDVI    time series monitoring
收稿日期: 2019-06-27      出版日期: 2020-06-18
:  TP79  
基金资助:中国地质调查项目“全国矿山开发状况遥感地质调查与监测”(DD20190511)
通讯作者: 张志
作者简介: 宋国策(1994-),男,硕士研究生,主要从事环境遥感方面的研究。Email: 1207638097@qq.com。
引用本文:   
宋国策, 张志. 内蒙古新巴尔虎右旗多金属矿区扬尘风积物遥感监测方法[J]. 国土资源遥感, 2020, 32(2): 46-53.
Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.02.07      或      https://www.gtzyyg.com/CN/Y2020/V32/I2/46
Fig.1  研究区位置示意图
Fig.2  研究区累年月最多风向和平均风速
Fig.3  研究区NDVI月均值变化
获取时间 卫星 传感器
类型
空间分辨
率/m
所用波段
2000-9-27 Landsat 5 TM 30 B1—B5,B7
2005-8-8 Landsat 5 TM 30 B1—B5,B7
2010-9-23 Landsat 5 TM 30 B1—B5,B7
2015-9-5 Landsat 8 OLI 30 B1—B7
2018-9-13 Landsat 8 OLI 30 B1—B7
2018-8-23 GF-1 全色多光谱相机 2 B1,B2,B3
2018-8-23 GF-1 全色多光谱相机 2 B1,B2,B3
Tab.1  本文所用遥感数据
Fig.4  端元提取与反射率计算
图像获取年份 RMSE检查范围 百分比/%
2000年 0~4.91 95.06
2005年 0~4.96 96.18
2010年 0~4.98 97.86
2015年 0~4.96 96.67
2018年 0~4.99 93.52
Tab.2  分解精度评价
Fig.5  道路掩模栅格图
Fig.6  2000—2018年甲乌拉—查干铅锌银矿区扬尘风积物污染分布
年份 清洁区面积 轻度污染区面积 中污染区面积 重污染区面积 极重污染区面积 污染区总面积
2000年 451.701 10.863 8.604 6.201 12.384 38.052
2005年 409.356 24.516 16.848 12.195 26.838 80.397
2010年 304.281 71.640 48.465 28.890 36.477 185.472
2015年 323.856 71.307 41.823 21.861 30.906 165.897
2018年 299.187 62.793 62.280 25.830 39.663 190.566
Tab.3  2000—2018年缓冲区内扬尘风积物污染面积统计
Fig.7  2000—2018年缓冲区内扬尘风积物污染面积变化
Fig.8  实验结果与NDVI效果对比
[1] 孙启忠. 试谈对做好草原大文章的理解[J]. 中国草地学报, 2009,31(1):13-16.
Sun Q Z. A Discussion on the understanding of doing a good prairie article[J]. Chinese Journal of Grassland, 2009,31(1):13-16.
[2] 马超, 张晓克, 郭增长, 等. 半干旱山区采矿扰动植被指数时空变化规律[J]. 环境科学研究, 2013,26(7):750-758.
Ma C, Zhang X K, Guo Z Z, et al. Spatiotemporal variation of vegetation disturbance vegetation index in semi-arid mountainous areas[J]. Research of Environmental Sciences, 2013,26(7):750-758.
[3] Przezdziecki K, Zawadzki J, Miatkowski Z. Use of the temperature-vegetation dryness index for remote sensing grassland moisture conditions in the vicinity of a lignite open-cast mine[J]. Environmental Earth Sciences, 2018,77(17):1-13.
[4] 高云峰, 徐友宁, 祝雅轩, 等. 矿山生态环境修复研究热点与前沿分析——基于VOSviewer和CiteSpace的大数据可视化研究[J]. 地质通报, 2018,37(12):2144-2153.
Gao Y F, Xu Y N, Zhu Y X, et al. Study on hotspots and frontier analysis of mine ecological environment restoration:Research on big data visualization based on VOSviewer and CiteSpace[J]. Geological notification, 2018,37(12):2144-2153.
[5] 黄翌, 汪云甲, 李效顺, 等. 煤炭开发对矿区植被扰动时空效应的图谱分析——以大同矿区为例[J]. 生态学报, 2013,33(21):7035-7043.
Huang W, Wang Y J, Li X S, et al. Analysis of the spatiotemporal effect of coal development on vegetation disturbance in mining area:Taking Datong mining area as an example[J]. Acta Ecologica Sinica, 2013,33(21):7035-7043.
[6] Ma Q, He C, Fang X. A rapid method for quantifying landscape-scale vegetation disturbances by surface coal mining in arid and semiarid regions[J]. Landscape Ecology, 2018,33(12):2061-2070.
[7] 毛香菊, 马亚梦, 邹安华, 等. 内蒙古草原某铜钼矿区土壤重金属污染特征研究[J]. 环境科学与技术, 2016,39(6):156-161,173.
Mao X G, Ma Y M, Zou A H, et al. Study on the characteristics of soil heavy metal pollution in a copper-molybdenum mining area in Inner Mongolia Grassland[J]. Environmental Science and Technology, 2016,39(6):156-161,173.
[8] 岳征文, 张瑞强, 王健, 等. 苏尼特右旗草原矿区土壤重金属污染特征与生态恢复[J].林业资源管理, 2017(6):124-130.
Yue Z W, Zhang R Q, Wang J, et al. Characteristics and ecological restoration of soil heavy metal pollution in the grassland area of Suniteyouqi[J]. Forest Resources Management, 2017,(6):124-130.
[9] 王海庆, 武明德, 刘琼, 等. 山西某地矿业开发占用土地状况遥感监测[J]. 国土资源遥感, 2018,30(1):116-120.doi: 10.6046/gtzyyg.2018.01.16.
Wang H Q, Wu M D, Liu Q, et al. Remote sensing monitoring of mining land in a certain area of Shanxi Province[J]. Remote Sensing for Land and Resources, 2018,30(1):116-120.doi: 10.6046/gtzyyg.2018.01.16.
[10] 李丽, 汪洁, 汪劲, 等. 基于高分卫星遥感数据的金属矿开发现状及环境问题研究——以江西省德兴多金属矿集区为例[J]. 中国地质调查, 2016,3(5):60-66.
Li L, Wang J, Wang J, et al. Study on the status and environmental problems of metal ore development based on high-resolution satellite remote sensing data:A case study of Dexing polymetallic ore concentration area in Jiangxi Province[J]. Chinese Geology Survey, 2016,3(5):60-66.
[11] 钱少猛. 遥感像元分解方法及其在滇池水质监测中的应用研究[D].中国科学院研究生院(遥感应用研究所), 2003.
Qian S M. Remote sensing image decomposition method and its application in Dianchi water quality monitoring[D].Graduate School of Chinese Academy of Sciences(Research Institute of Remote Sensing Applications), 2003.
[12] 吴溪, 郭斌, 陈忠升, 等. 基于Landsat影像的环胶州湾不透水面格局演变过程[J]. 资源科学, 2018,40(11):2260-2269.
Wu X, Guo B, Chen Z S, et al. Evolution process of impervious surface pattern of Jiaozhou Bay based on Landsat image[J]. Resources Science, 2018,40(11):2260-2269.
[13] Fernandezmanso,Alfonso, Quintano,et al.Evaluation of potential of multiple endmember spectral mixture analysis(MESMA) for surface coal mining affected area mapping in different world forest ecosystems[J]. Remote Sensing of Environment, 2012,127(12):181-193.
[14] 宋翔宇, 刘婷婷, 王泽民, 等. 基于改进FCLS算法的南极海冰密集度估算及算法比较[J]. 极地研究, 2018,30(1):67-76.
Song X Y, Liu T T, Wang Z M, et al. Animation and algorithm comparison of Antarctic Sea Ice concentration based on improved FCLS algorithm[J]. Chinese Journal of Polar Research, 2018,30(1):67-76.
[15] Rodríguez L, Ruiz E, Alonso-Azcárate J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain[J]. Journal of Environmental Management, 2009,90(2):1106-1116.
[16] Etyemezlan,Kuhns, Gillies.Vehicle-based road dust emission measurement(III):Effect of speed,traffic volume,location,and season on PM10 road dust emissions in the Treasure Valley,ID[J]. Atmospheric Environment, 2003,37(32):4583-4593.
[17] Dorđević D, Vukmirović Z, Tošić I, et al. Contribution of dust transport and resuspension to particulate matter levels in the Mediterranean atmosphere[J]. Atmospheric Environment, 2004,38(22):3637-3645.
[18] 郝利娜, 张志, 何文熹, 等. 鄂东南尾矿库高分辨率遥感图像识别因子研究[J]. 国土资源遥感, 2012,24(3):154-158.doi: 10.6046/gtzyyg.2012.03.27.
doi: 10.6046/gtzyyg.2012.03.27
Hao L N, Zhang Z, He W X, et al. Research on high-resolution remote sensing image recognition factor of E-east tailings reservoir[J]. Remote Sensing for Land and Resources, 2012,24(3):154-158.doi: 10.6046/gtzyyg.2012.03.27.
[19] 甘甫平, 刘圣伟, 周强. 德兴铜矿矿山污染高光谱遥感直接识别研究[J]. 地球科学, 2004,29(1):119-126.
Gan F P, Liu S W, Zhou Q. Study on direct recognition of nine pollution by hyperspectral remote sensing in Dexing Copper Mine[J]. Earth Science, 2004,29(1):119-126.
[20] 杨显华, 黄洁, 田立, 等. 矿山遥感监测在采空区稳定性分析中的应用[J]. 国土资源遥感, 2018,30(3):143-150.doi: 10.6046/gtzyyg.2018.03.20.
Yang X H, Huang J, Tian L, et al. Application of mine remote sensing monitoring to analysis of mine goaf stability[J]. Remote Sensing for Land and Resources, 2018,30(3):143-150.doi: 10.6046/gtzyyg.2018.03.20.
[21] 宋江涛, 潘军, 邢立新, 等. 线性光谱混合模型的适用观测尺度分析[J]. 遥感学报, 2019,23(2):262-279.
Song J T, Pan J, Xing L X, et al. Analysis of applicable scales of linear spectral hybrid models[J]. Journal of Remote Sensing, 2019,23(2):262-279.
[22] 张泽民, 吕昌河, 谢苗苗, 等. 基于WorldView 2影像的矿区植被重建效果评估[J]. 生态学报, 2018,38(4):1301-1310.
Zhang Z M, Lyu C H, Xie M M, et al. Evaluation of vegetation restoration effects in mining areas based on WorldView 2 images[J]. Acta Ecologica Sinica, 2018,38(4):1301-1310.
[23] 陈晋, 马磊, 陈学泓, 等. 混合像元分解技术及其进展[J]. 遥感学报, 2016,20(5):1102-1109.
Chen J, Ma L, Chen X Z, et al. The mixed pixel decomposition technique and its progress[J]. Journal of Remote Sensing, 2016,20(5):1102-1109.
[24] 蔡薇, 郭洪海, 隋学艳, 等. 基于混合像元分解提取小麦种植面积的技术与方法研究[J]. 山东农业科学, 2009,213(5):12-16.
Cai W, Guo H H, Sui X Y, et al. Study on techniques and methods for extracting wheat planting area based on mixed pixel decomposition[J]. Shandong Agricultural Sciences, 2009,213(5):12-16.
[25] 雷利卿, 岳燕珍, 孙九林, 等. 遥感技术在矿区环境污染监测中的应用研究[J]. 环境保护, 2002,12(2):33-36.
Lei L Q, Yue Y Z, Sun J L, et al. Application of remote sensing technology in environmental pollution monitoring in mining areas[J]. Environmental Protection, 2002,12(2):33-36.
[26] 崔克强, 王学中, 何友江, 等. 锡林浩特露天煤矿排土场扬尘排放及污染[J]. 干旱区资源与环境, 2017,31(6):160-165.
Cui K Q, Wang X Z, He Y J, et al. Dust emission and pollution of dumping site in Xilinhot Open-pit Coal Mine[J]. Journal of Arid Land Resources and Environment, 2017,31(6):160-165.
[27] 高原, 蓝登明, 黄晓强, 等. 白音诺尔铅锌矿尾矿库扬尘风积物对植被生长的影响[J]. 内蒙古农业大学学报(自然科学版), 2016,37(4):60-65.
Gao Y, Lan D M, Huang X Q, et al. Effects of dust accumulation on the vegetation growth of Baiyinnuoer lead-zinc mine tailings reservoir[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2016,37(4):60-65.
[1] 史飞飞, 高小红, 肖建设, 李宏达, 李润祥, 张昊. 基于集成学习和多时相遥感影像的枸杞种植区分类[J]. 自然资源遥感, 2022, 34(1): 115-126.
[2] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[3] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[4] 李梦梦, 范雪婷, 陈超, 李倩楠, 杨锦. 徐州矿区2016—2018年地面沉降监测与分析[J]. 自然资源遥感, 2021, 33(4): 43-54.
[5] 刘咏梅, 范鸿建, 盖星华, 刘建红, 王雷. 基于无人机高光谱影像的NDVI估算植被盖度精度分析[J]. 自然资源遥感, 2021, 33(3): 11-17.
[6] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[7] 杜方洲, 石玉立, 盛夏. 基于深度学习的TRMM降水产品降尺度研究——以中国东北地区为例[J]. 国土资源遥感, 2020, 32(4): 145-153.
[8] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[9] 冯林艳, 谭炳香, 王晓慧, 陈新云, 曾伟生, 戚曌. 基于分布函数的对象级森林变化快速检测[J]. 国土资源遥感, 2020, 32(2): 73-80.
[10] 徐嘉昕, 房世波, 张廷斌, 朱永超, 吴东, 易桂花. 2000—2016年三江源区植被生长季NDVI变化及其对气候因子的响应[J]. 国土资源遥感, 2020, 32(1): 237-246.
[11] 王茹, 张艳芳, 张洪敏, 李云. 城市新区不透水地表盖度与人为热的关系研究——以陕西省西咸新区为例[J]. 国土资源遥感, 2020, 32(1): 247-254.
[12] 程东亚, 李旭东. 大气校正前后山地流域NDVI变化特征对比[J]. 国土资源遥感, 2020, 32(1): 90-97.
[13] 杨显华, 徐肖, 肖礼晓, 田立, 郝利娜, 许鹏. 察尔汗盐湖演变趋势及驱动力分析[J]. 国土资源遥感, 2020, 32(1): 130-137.
[14] 王伟, 阿里木·赛买提, 吉力力·阿不都外力. 基于地理探测器模型的中亚NDVI时空变化特征及其驱动因子分析[J]. 国土资源遥感, 2019, 31(4): 32-40.
[15] 唐亮, 赵忠明, 唐娉. 从NDVI序列检测植被“绿化”或“褐化”变化趋势的新方法[J]. 国土资源遥感, 2019, 31(2): 89-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发