Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 265-273    DOI: 10.6046/zrzyyg.2023345
  海岸带空间资源及生态健康遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
基于GEE与多源遥感数据的黄河三角洲湿地植物群落分类
张念秋1,2(), 毛德华1,3(), 冯凯东1,2, 甄佳宁1, 相恒星1, 任永星1
1.中国科学院东北地理与农业生态研究所,长春 130102
2.中国科学院大学,北京 100049
3.中国科学院湿地生态与环境重点实验室,长春 130102
Classification of wetland plant communities in the Yellow River Delta based on GEE and multisource remote sensing data
ZHANG Nianqiu1,2(), MAO Dehua1,3(), FENG Kaidong1,2, ZHEN Jianing1, XIANG Hengxing1, REN Yongxing1
1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, CAS, Changchun 130102, China
全文: PDF(3986 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

精确识别滨海湿地植物群落对加强滨海湿地生态质量监测、提升滨海湿地生态系统功能具有重要意义。该研究以黄河三角洲为研究区,基于Google Earth Engine(GEE)平台上的Sentinel-1/2影像,构建包含物候、传统光学、红边和雷达特征的特征向量集,采用随机森林算法对2021年黄河三角洲湿地植物群落进行分类,并进一步探讨物候特征在分类中发挥的作用。研究结果表明: ①分类的总体精度为97.91%,Kappa系数为0.97,2021年黄河三角洲湿地中芦苇、碱蓬、互花米草和柽柳的面积分别为49.91 km2,39.91 km2,79.36 km2和20.86 km2; ②基于归一化植被指数(normalized difference vegetation index,NDVI)时间序列拟合曲线可有效提取黄河三角洲湿地典型植物群落的物候特征,其中可分性较强的特征有最大值日期、基准值、生长期振幅、季初增长率和季末衰减率; ③与其他特征变量相比,加入物候特征后总体精度提升幅度最大,物候特征在分类中的作用更为突出。研究结果能够为黄河三角洲滨海湿地植物群落监测与生态保护提供方法参考与科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张念秋
毛德华
冯凯东
甄佳宁
相恒星
任永星
关键词 GEESentinel-1/2影像物候特征湿地植物群落黄河三角洲    
Abstract

Accurately identifying plant communities in coastal wetlands is critical for strengthening the ecological quality monitoring and enhancing the ecosystem functions of coastal wetlands. With the Yellow River Delta as the study area, this study constructed a feature vector set including phenological, optical, red-edge, and radar features based on Sentinel-1/2 image data using the Google Earth Engine (GEE) platform. It classified the wetland plant communities in the Yellow River Delta in 2021 using the random forest algorithm. Moreover, it explored the effects of phenological features in classification. The results reveal an overall classification accuracy of 97.91 % and a Kappa coefficient of 0.97. In 2021, the distribution areas of Phragmites australis, Suaeda glauca, Spartina alterniflora, and Tamarix chinensis were 49.91 km2, 39.91 km2, 79.36 km2, and 20.86 km2, respectively. The phenological features of typical plant communities in the Yellow River Delta wetlands were effectively extracted based on the normalized difference vegetation index (NDVI) time-series fitting curves. The highly distinguishable features included the maximum value date, base value, growth amplitude, beginning-of-season growth rate, and end-of-season decline rate. Compared to other feature variables, phenological features contributed more significantly to the overall classification accuracy, suggesting their prominent role in classification. The results of this study provide a methodological reference and scientific basis for the plant community monitoring and ecological conservation of coastal wetlands in the Yellow River Delta.

Key wordsGEE    Sentinel-1/2 images    phenological features    wetland plant community    Yellow River Delta
收稿日期: 2023-11-14      出版日期: 2025-05-09
ZTFLH:  TP79  
基金资助:国家自然科学基金优秀青年科学基金项目“湿地景观格局与过程”(42222103)
通讯作者: 毛德华(1987-)男,博士,研究员,研究方向为湿地遥感。Email: maodehua@iga.ac.cn
作者简介: 张念秋(1999-),女,硕士研究生,研究方向为滨海湿地遥感。Email: zhangnianqiu23@mails.ucas.ac.cn
引用本文:   
张念秋, 毛德华, 冯凯东, 甄佳宁, 相恒星, 任永星. 基于GEE与多源遥感数据的黄河三角洲湿地植物群落分类[J]. 自然资源遥感, 2025, 37(2): 265-273.
ZHANG Nianqiu, MAO Dehua, FENG Kaidong, ZHEN Jianing, XIANG Hengxing, REN Yongxing. Classification of wetland plant communities in the Yellow River Delta based on GEE and multisource remote sensing data. Remote Sensing for Natural Resources, 2025, 37(2): 265-273.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023345      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/265
Fig.1  研究区概况图
数据
名称
传感器
类型
影像获取时间 空间分
辨率/m
重访
周期/d
Sentinel-1 SAR-C 2021-05-01—2021-10-31 10 6
Sentinel-2 MSI 2021-01-01—2021-12-31 10~60 2~5
Tab.1  卫星遥感数据基本信息
类型 芦苇 碱蓬 互花米草 柽柳 非植被 总计
训练样本 111 39 131 37 42 360
验证样本 36 23 53 19 13 144
合计 147 62 184 56 55 504
Tab.2  各类植物和非植被的样本数量
Fig.2  基于二项傅里叶函数的NDVI拟合曲线
特征变量 特征简称 特征说明
光谱波段 B B1,B2,B3,B4,B8,B9,B11,B12
植被指数 NDVI (B8-B4)/(B8+B4)
EVI 2.5[(B8-B4)/(B8+6B4-7.5B2+1)]
RVI B8/B4
水体指数 NDWI (B3-B8)/(B3+B8)
mNDWI (B3-B11)/(B3+B11)
LSWI (B8-B11)/(B8+B11)
红边特征 Bre B5,B6,B7,B8A
NDVIre1 (B8A-B5)/(B8A+B5)
NDVIre2 (B8A-B6)/(B8A+B6)
NDre1 (B6-B5)/(B6+B5)
NDre2 (B7-B5)/(B7+B5)
CIre B7/B5-1
雷达特征 VV 垂直发射和垂直接收的极化波
VH 垂直发射和水平接收的极化波
SAR_sum VV+VH
SAR_diff VV-VH
SAR_NDVI (VV-VH)/(VV+VH)
物候特征 SOS NDVI从左最小值向右增加到季节振幅的20%对应的日期
EOS NDVI从右最小值向左增加到季节振幅的20%对应的日期
LOS 从生长季开始到生长季结束持续的时间
MOS 拟合函数在季节中达到最大值对应的日期
BV 拟合函数的最小值
SA 拟合函数最大值与基准值之差
IRS (最大值-SOS对应的NDVI)/(MOS-SOS)
DRS (最大值-EOS对应的NDVI)/(EOS-MOS)
Tab.3  特征集描述
方案 特征组合
方案1 传统光学特征
方案2 传统光学特征+红边特征
方案3 传统光学特征+红边特征+雷达特征
方案4 传统光学特征+红边特征+雷达特征+物候特征
Tab.4  分类模型信息
Fig.3  各类植物生长季内NDVI及时间对比
Fig.4  不同湿地植物群落物候特征的箱线图
Fig.5  分类精度与特征组合关系
比例 物候特征 传统光
学特征
红边特征 雷达特征
特征变量数量占比 38.5 38.5 15.4 7.7
特征变量重要性总
和占比
35.9 40.3 14.7 9.0
Tab.5  特征变量重要性对比
Fig.6  2021年黄河三角洲湿地植物群落分类结果与面积统计
类型 芦苇 碱蓬 互花米草 柽柳 非植被 UA/%
芦苇 36 0 0 0 0 100.00
碱蓬 0 23 0 0 0 100.00
互花米草 0 0 52 1 0 98.11
柽柳 0 0 0 19 0 100.00
非植被 0 2 0 0 11 84.62
PA/% 100.00 92.00 100.00 95.00 100.00
OA: 97.91% Kappa系数: 0.972 2
Tab.6  黄河三角洲湿地植物分类混淆矩阵
Fig.7  4种实验方案精度对比
[1] Scott D B, Frail J, Mudie P J. Coastal wetlands of the world[M]. Cambridge: Cambridge University Press, 2014:17.
[2] Song S, Wu Z F, Wang Y F, et al. Mapping the rapid decline of the intertidal wetlands of China over the past half century based on remote sensing[J]. Frontiers in Earth Science, 2020:8.
[3] Murray N J, Clemens R S, Phinn S R, et al. Tracking the rapid loss of tidal wetlands in the Yellow Sea[J]. Frontiers in Ecology and the Environment, 2014, 12(5):267-272.
[4] Qiu Z Q, Mao D H, Feng K D, et al. High-resolution mapping changes in the invasion of Spartina alterniflora in the Yellow River Delta[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:6445-6455.
[5] 马喜君, 陆兆华, 林涛. 盐城海滨湿地生态风险评价[J]. 海洋环境科学, 2010, 29(4):599-602.
Ma X J, Lu Z H, Lin T. Ecological risk assessment of Yancheng Coastal Wetland[J]. Marine Environmental Science, 2010, 29(4):599-602.
[6] 许婕, 刘加珍, 张天举, 等. 黄河口湿地柽柳灌丛土壤盐渍化特征[J]. 生态学报, 2022, 42(17):7118-7127.
Xu J, Liu J Z, Zhang T J, et al. Soil salinization characteristics under the crown of Tamarix chinensis in the wetland of the Yellow River Estuary[J]. Acta Ecologica Sinica, 2022, 42(17):7118-7127.
[7] 刘瑞清, 李加林, 孙超, 等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7):1680-1692.
doi: 10.11821/dlxb202107008
Liu R Q, Li J L, Sun C, et al. Classification of Yancheng coastal wetland vegetation based on vegetation phenological characteristics derived from Sentinel-2 time-series[J]. Acta Geographica Sinica, 2021, 76(7):1680-1692.
doi: 10.11821/dlxb202107008
[8] Chen B Q, Xiao X M, Li X P, et al. A mangrove forest map of China in 2015:Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:104-120.
[9] Zhao Y X, Mao D H, Zhang D Y, et al. Mapping Phragmites australis aboveground biomass in the momoge wetland ramsar site based on sentinel-1/2 images[J]. Remote Sensing, 2022, 14:694.
[10] 许青云, 李莹, 谭靖, 等. 基于高分六号卫星数据的红树林提取方法[J]. 自然资源遥感, 2023, 35(1):41-48.doi:10.6046/zrzyyg.2022048.
Xu Q Y, Li Y, Tan J, et al. Information extraction method of mangrove forests based on GF-6 data[J]. Remote Sensing for Natural Resources, 2023, 35(1):41-48.doi:10.6046/zrzyyg.2022048.
[11] Zhang C, Gong Z N, Qiu H C, et al. Mapping typical salt-marsh species in the Yellow River Delta wetland supported by temporal-spatial-spectral multidimensional features[J]. Science of the Total Environment, 2021, 783:147061.
[12] Zhu W Q, Ren G B, Wang J P, et al. Monitoring the invasive plant Spartina alterniflora in Jiangsu coastal wetland using MRCNN and long-time series landsat data[J]. Remote Sensing, 2022, 14(11):2630.
[13] 宁晓刚, 常文涛, 王浩, 等. 联合GEE与多源遥感数据的黑龙江流域沼泽湿地信息提取[J]. 遥感学报, 2022, 26(2):386-396.
Ning X G, Chang W T, Wang H, et al. Extraction of marsh wetland in Heilongjiang basin based on GEE and multi-source remote sensing data[J]. National Remote Sensing Bulletin, 2022, 26(2):386-396.
[14] Li H Y, Mao D H, Wang Z M, et al. Invasion of spartina alterniflora in the coastal zone of mainland China:Control achievements from 2015 to 2020 towards the Sustainable Development Goals[J]. Journal of Environmental Management, 2022, 323:116242.
[15] 张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326.
Zhang L, Gong Z N, Wang Q W, et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images[J]. National Remote Sensing Bulletin, 2019, 23(2):313-326.
[16] Gong Z N, Zhang C, Zhang L, et al. Assessing spatiotemporal characteristics of native and invasive species with multi-temporal remote sensing images in the Yellow River Delta,China[J]. Land Degradation & Development, 2021, 32(3):1338-1352.
[17] Han X, Wang Y, Ke Y, et al. Phenological heterogeneities of invasive Spartina alterniflora salt marshes revealed by high-spatial-resolution satellite imagery[J]. Ecological Indicators, 2022, 144:109492.
[18] Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS Collection 5 global land cover:Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010, 114(1):168-182.
[19] Wang T, Zhang H S, Lin H, et al. Textural-spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery[J]. Remote Sensing, 2016, 8(1):24.
[20] 陈健, 李虎, 刘玉锋, 等. 基于Sentinel-2数据多特征优选的农作物遥感识别研究[J]. 自然资源遥感, 2023, 35(4):292-300.doi:10.6046/zrzyyg.2022272.
Chen J, Li H, Liu Y F, et al. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4):292-300.doi:10.6046/zrzyyg.2022272.
[21] Li A, Song K, Chen S, et al. Mapping African wetlands for 2020 using multiple spectral,geo-ecological features and Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 193:252-268.
[22] Tian J, Wang L, Yin D, et al. Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion[J]. Remote Sensing of Environment, 2020, 242:111745.
[23] Zhang X, Xiao X, Wang X, et al. Quantifying expansion and removal of Spartina alterniflora on Chongming Island,China,using time series Landsat images during 1995-2018[J]. Remote Sensing of Environment, 2020, 247:111916.
[24] Sun C, Li J, Liu Y, et al. Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series[J]. Remote Sensing of Environment, 2021, 256:112320.
[25] 李恒凯, 王利娟, 肖松松. 基于多源数据的南方丘陵山地土地利用随机森林分类[J]. 农业工程学报, 2021, 37(7):244-251.
Li H K, Wang L J, Xiao S S. Random forest classification of land use in hilly and mountaineous areas of Southern China using multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7):244-251.
[26] Ai J, Gao W, Gao Z, et al. Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze Estuary using time series of GaoFen satellite No.1 wide field of view imagery[J]. Journal of Applied Remote Sensing, 2017, 11:026020.
[27] Feng K, Mao D, Qiu Z, et al. Can time-series Sentinel images be used to properly identify wetland plant communities?[J]. GIScience & Remote Sensing, 2022, 59(1):2202-2216.
[28] 薛朝辉, 钱思羽. 融合Landsat 8与Sentinel-2数据的红树林物候信息提取与分类[J]. 遥感学报, 2022, 26(6):1121-1142.
Xue Z H, Qian S Y. Fusion of Landsat 8 and Sentinel-2 data for mangrove phenology information extraction and classification[J]. National Remote Sensing Bulletin, 2022, 26(6):1121-1142.
[1] 陈媛媛, 严铄婷, 颜瑾, 郑思齐, 王昊, 朱杰. 基于Landsat时间序列影像和LandTrendr算法的浙江省丽水市森林扰动监测[J]. 自然资源遥感, 2025, 37(1): 179-187.
[2] 冯倩, 张佳华, 邓帆, 吴贞江, 赵恩灵, 郑培鑫, 韩杨. 基于特征优选和时空融合算法的黄河三角洲湿地类别制图方法研究[J]. 自然资源遥感, 2024, 36(2): 39-49.
[3] 宋英旭, 邹昱嘉, 叶润青, 贺志霞, 王宁涛. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024, 36(1): 154-161.
[4] 王煜淼, 李胜, 东春宇, 杨刚. 多特征参数支持的红树林遥感信息提取——以广东省为例[J]. 自然资源遥感, 2024, 36(1): 95-102.
[5] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[6] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[7] 石敏, 李慧颖, 贾明明. 基于GEE云平台与Landsat数据的山口自然保护区红树林时空变化分析[J]. 自然资源遥感, 2023, 35(2): 61-69.
[8] 李毅, 程丽娜, 鲁莹莹, 张博淳, 于森, 贾明明. 基于最大值合成和最大类间方差法莱州湾滨海滩涂变化研究[J]. 自然资源遥感, 2022, 34(4): 68-75.
[9] 李叶繁, 王琳, 张冬珠. 光谱特征和空间卷积相协同的近岸海域养殖塘遥感信息提取[J]. 自然资源遥感, 2022, 34(4): 42-52.
[10] 吴佳平, 张旸, 张杰, 范胜龙, 杨超, 张小芳. 基于MODIS数据的淤泥质海岸水体指数比较与分析——以黄河三角洲海岸为例[J]. 国土资源遥感, 2019, 31(3): 242-249.
[11] 罗浩, 王红, 施长惠. 黄河三角洲地区地下水埋深遥感反演[J]. 国土资源遥感, 2013, 25(3): 145-152.
[12] 关元秀, 刘高焕. 黄河三角洲盐碱地动态变化遥感监测[J]. 国土资源遥感, 2003, 15(2): 19-22,33.
[13] 刘庆生, 刘高焕, 叶庆华. 近、现代黄河三角洲统计分布特征浅析[J]. 国土资源遥感, 2001, 13(4): 50-52,63.
[14] 霍东民, 张景雄, 孙家抦. 利用CBERS-1卫星数据进行盐碱地专题信息提取研究[J]. 国土资源遥感, 2001, 13(2): 48-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发