Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (3): 32-44    DOI: 10.6046/zrzyyg.2023401
  矿山生态环境遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
长江经济带湖北段废弃露天矿山生态修复遥感动态监测和生态修复效果评价
孙娅琴1,2,3(), 邸宝刚4, 邢宇1, 安娜1(), 张仙1
1.中国自然资源航空物探遥感中心,北京 100083
2.自然资源部航空地球物理与遥感地质重点实验室,北京 100083
3.自然资源部地质灾害隐患遥感识别与监测工程技术创新中心,北京 100083
4.中国四维测绘技术有限公司,北京 100083
Remote sensing-based dynamic monitoring and ecological restoration effect assessment of abandoned open-pit mines in the Yangtze River economic belt within Hubei Province
SUN Yaqin1,2,3(), DI Baogang4, XING Yu1, AN Na1(), ZHANG Xian1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Nature Resources, Beijing 100083, China
3. Technology Innovation Center for Geohazards Identification and Monitoring with Earth Observation System, Ministry of Natural Resources of the People’s Republic of China, Beijing 100083, China
4. China Siwei Surveying and Mapping Technology Co., Ltd., Beijing 100083, China
全文: PDF(10070 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 长江经济带横跨中国东中西三大区域,是生态文明建设的先行示范带。湖北省作为长江经济带的一员,矿产资源丰富,长期大规模矿产资源开发破坏了生态环境,影响社会稳定,亟须对废弃露天矿山进行生态修复。截至目前,少有学者对长江经济带湖北段废弃露天矿山的生态修复情况进行系统跟踪监测和分析。该文基于2017—2022年国产高分辨率遥感数据,采用人机交互解译对长江经济带湖北段干流及主要支流(汉江、清江)两岸各10 km范围内废弃露天矿山的分布和生态修复进展进行监测。结果发现,截至2017年底,研究区共有废弃露天矿山图斑537处,涉及矿山283座,面积共2 225.19 hm2; 2018—2022年动态变化监测结果显示,研究区废弃露天矿山的生态修复治理面积由2018年的291.01 hm2增长至2022年的1 741.19 hm2,治理率持续上升,生态修复治理情况总体向好。基于2017—2022年遥感生态指数(remote sensing based ecological index,RSEI),对废弃露天矿山生态修复效果进行评价,结果发现废弃露天矿山图斑范围RSEI均值由2017年的0.397 7增长为2022年的0.423 9,增长率6.59%,图斑范围的生态状况向好发展,生态修复效果明显。总的来说,该文对研究区废弃露天矿山生态修复动态变化情况进行监测和评价,所得结果可为湖北省乃至全国其他区域废弃露天矿山监测提供数据支撑和方法借鉴,具有一定的研究意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙娅琴
邸宝刚
邢宇
安娜
张仙
关键词 长江经济带废弃露天矿山生态修复遥感生态指数生态修复效果评价    
Abstract

The Yangtze River economic belt (YREB), spanning the east, middle, and west regions of China, serves as a pioneering demonstration belt for the construction of ecological civilization. Hubei Province, a member of the YREB, holds abundant mineral resources. Its long-term exploitation of mineral resources has caused ecosystem damage and social stability disruption, necessitating ecological restoration of abandoned open-pit mines. However, few studies concern the systematic tracking, monitoring, and analysis of the ecological restoration of abandoned open-pit mines in the YREB within Hubei Province. Based on the remote sensing data from the domestic high-resolution satellite from 2017 to 2022, and utilizing human-computer interaction interpretation, this study monitored the distributions and ecological restoration of abandoned open-pit mines within 10 km on both sides of the mainstems and major tributaries (Hanjiang River and Qingjiang River) in the YREB within Hubei Province. The results indicate that by the end of 2017, 537 patches of abandoned open-pit mines had been identified in the study area, involving 283 mines with a total area of 2 225.19 hm2. The monitoring results of dynamic changes from 2018 to 2022 show that the ecological restoration and treatment area of abandoned open-pit mines increased from 291.01 hm2 in 2018 to 1 741.19 hm2 in 2022, manifesting a continuously rising treatment rate, suggesting overall improved ecological restoration and treatment results. Using the remote sensing ecological index (RSEI) values from 2017 to 2022, this study assessed the ecological restoration effects of abandoned open-pit mines. The assessment results reveal that the average RSEI value for the patches increased from 0.397 7 in 2017 to 0.423 9 in 2022, with a growth rate of 6.59 %, suggesting significantly improved ecological conditions and restoration effects. Overall, the monitoring and assessment results of the dynamic changes in ecological restoration of abandoned open-pit mines in the study area provide valuable data and methodological insights for monitoring abandoned open-pit mines in Hubei Province and other regions in China, highlighting the significance of this study.

Key wordsYangtze River economic belt (YREB)    abandoned open-pit mine    ecological restoration    remote sensing ecological index (RSEI)    ecological restoration effect assessment
收稿日期: 2023-12-26      出版日期: 2025-07-01
ZTFLH:  TP79  
基金资助:中国自然资源航空物探遥感中心青年创新基金课题“基于多源遥感数据的矿山环境污染监测方法研究”(2023YFL30);中国地质调查项目“全国矿山开发及重点地区生态空间监测评估”(DD20230100)
通讯作者: 安娜(1980-),女,高级工程师,主要从事遥感矿产地质、自然资源、土地研究。Email: an_na826@163.com
作者简介: 孙娅琴(1991-),女,工程师,主要从事矿山遥感监测、遥感地质方面的研究。Email: 763847773@qq.com
引用本文:   
孙娅琴, 邸宝刚, 邢宇, 安娜, 张仙. 长江经济带湖北段废弃露天矿山生态修复遥感动态监测和生态修复效果评价[J]. 自然资源遥感, 2025, 37(3): 32-44.
SUN Yaqin, DI Baogang, XING Yu, AN Na, ZHANG Xian. Remote sensing-based dynamic monitoring and ecological restoration effect assessment of abandoned open-pit mines in the Yangtze River economic belt within Hubei Province. Remote Sensing for Natural Resources, 2025, 37(3): 32-44.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023401      或      https://www.gtzyyg.com/CN/Y2025/V37/I3/32
Fig.1  研究区分布简图
时相 影像类型 空间分
辨率/m
用途
2017年7—11月 GF-1/GF-2/ZY-3 0.8~2.0 本底调查
2018年7—11月 GF-1/GF-2/GF-6/ZY-3 0.8~2.0 变化调查
2019年7—11月 GF-1/GF-2/GF-6/ZY-3 0.8~2.0 变化调查
2020年7—11月 GF-1/GF-2/ZY-3/BJ-2 0.8~2.0 变化调查
2021年7—11月 GF-1/GF-2/ZY-1/
GF-7/BJ-2
0.65~2.0 变化调查
2022年7—11月 GF-1/GF-2/GF-6/BJ-2 0.8~2.0 变化调查
Tab.1  各年度国产高分辨率遥感影像统计表
Fig.2  文章主要技术流程图
Fig.3  研究区废弃露天矿山治理前后遥感影像图示例
Fig.4  研究区废弃露天矿山分布图
市级行政区 矿山数量/座 图斑数量/处 图斑面积/hm2
武汉市 10 17 100.76
黄石市 59 159 838.17
十堰市 2 2 3.78
宜昌市 34 55 175.26
襄阳市 10 30 95.96
鄂州市 9 21 43.52
荆门市 23 44 122.82
孝感市 18 41 154.10
荆州市 9 15 38.23
黄冈市 21 41 241.47
咸宁市 5 16 64.75
恩施土家族
苗族自治州
71 78 265.88
仙桃市 4 5 12.08
潜江市 4 7 33.15
天门市 4 6 35.26
总计 283 537 2 225.19
Tab.2  研究区废弃露天矿山分布情况统计表
地级市 采场 中转
场地
固体
废弃物
矿山
建筑
小计
武汉市 71.28 22.78 6.70 100.76
黄石市 441.72 284.13 91.14 21.18 838.17
十堰市 3.78 3.78
宜昌市 130.55 44.18 0.53 175.26
襄阳市 88.66 7.30 95.96
鄂州市 29.70 11.59 2.23 43.52
荆门市 92.09 26.67 2.98 1.08 122.82
孝感市 104.61 44.38 5.11 154.10
荆州市 21.25 16.98 38.23
黄冈市 207.45 33.17 0.85 241.47
咸宁市 45.25 14.52 4.20 0.78 64.75
恩施土家族
苗族自治州
248.07 17.81 265.88
仙桃市 1.37 10.71 12.08
潜江市 7.98 25.17 33.15
天门市 10.27 24.99 35.26
总计 1 504.03 584.38 113.74 23.04 2 225.19
Tab.3  研究区废弃露天矿山开发占地面积统计
Fig.5  研究区2018—2022年废弃露天矿山生态修复治理情况遥感监测图
Fig.6  研究区2018—2022年废弃露天矿山生态修复治理面积和治理率统计
Fig.7  研究区2018—2022年废弃露天矿山生态修复治理增长面积和治理率增长情况统计
Fig.8  研究区2018—2022年废弃露天矿山开发占地类型生态修复治理面积统计图
Fig.9  研究区2018—2022年废弃露天矿山开发占地类型生态修复治理率统计图
Fig.10  研究区2018—2022年废弃露天矿山生态修复治理后地类面积统计图
Fig.11  研究区各地级市(州)2018—2022年废弃露天矿山生态修复治理面积统计
Fig.12  研究区各地级市(州)2018—2022年废弃露天矿山生态修复治理率统计
Fig.13  研究区2022年废弃露天矿山生态修复治理前后地类面积统计
Fig.14  研究区2017—2022年RSEI分布图
Fig.15  研究区2017—2022年RSEI统计
Fig.16  废弃矿山图斑范围2017—2022年RSEI统计
Fig.17  某废弃矿山图斑范围2017—2022年RSEI分布图
Fig.18  研究区2017—2022年各等级RSEI面积统计
Fig.19  废弃露天矿山图斑范围2017—2022年各等级RSEI面积统计
[1] 张进德, 郗富瑞. 我国废弃矿山生态修复研究[J]. 生态学报, 2020, 40(21):7921-7930.
Zhang J D, Xi F R. Study on ecological restoration of abandoned mines in China[J]. Acta Ecologica Sinica, 2020, 40(21):7921-7930.
[2] 关钊, 谢红彬, 罗琳, 等. 近30年中国矿业废弃地生态修复及再利用研究热点及趋势分析[J]. 中国矿业, 2022, 31(5):18-26.
Guan Z, Xie H B, Luo L, et al. Analysis of research hotspots and trends in ecological restoration and reuse of China’s mining wastelands in the past 30 years[J]. China Mining Magazine, 2022, 31(5):18-26.
[3] Chaussard E, Kerosky S. Characterization of black sand mining activities and their environmental impacts in the Philippines using remote sensing[J]. Remote Sensing, 2016, 8(2):100.
[4] Ranjan A K, Sahoo D, Gorai A K. Quantitative assessment of landscape transformation due to coal mining activity using earth observation satellite data in Jharsuguda coal mining region,Odisha,India[J]. Environment,Development and Sustainability, 2021, 23(3):4484-4499.
[5] Kayet N, Pathak K, Singh C P, et al. Vegetation health conditions assessment and mapping using AVIRIS-NG hyperspectral and field spectroscopy data for-environmental impact assessment in coal mining sites[J]. Ecotoxicology and Environmental Safety, 2022,239:113650.
[6] Li Q, Li F, Guo J, et al. The synergistic effect of topographic factors and vegetation indices on the underground coal mine utilizing unmanned aerial vehicle remote sensing[J]. International Journal of Environmental Research and Public Health, 2023, 20(4):3759.
[7] Xu Y, Guo L, Li J, et al. Automatically identifying the vegetation destruction and restoration of various open-pit mines utilizing remotely sensed images:Auto-VDR[J]. Journal of Cleaner Production, 2023,414:137490.
[8] Li H, Xu F, Li Q. Remote sensing monitoring of land damage and restoration in rare earth mining areas in 6 counties in southern Jiangxi based on multisource sequential images[J]. Journal of Environmental Management, 2020,267:110653.
[9] Vorovencii I. Changes detected in the extent of surface mining and reclamation using multitemporal Landsat imagery:A case study of Jiu Valley,Romania[J]. Environmental Monitoring and Assessment, 2021, 193(1):30.
doi: 10.1007/s10661-020-08834-w pmid: 33398530
[10] Xiao W, Chen W, Deng X. Coupling and coordination of coal mining intensity and social-ecological resilience in China[J]. Ecological Indicators, 2021,131:108167.
[11] Yuan D, Hu Z, Yang K, et al. Assessment of the ecological impacts of coal mining and restoration in alpine areas:A case study of the Muli Coalfield on the Qinghai-Tibet Plateau[J]. IEEE Access, 2021,9:162919-162934.
[12] Ogunro O T, Owolabi A O. Assessment of the sustainability of landcovers due to artisanal mining in Jos Area,Nigeria[J]. Environmental Science and Pollution Research International, 2023, 30(13):36502-36520.
[13] Cetin M, Pekkan O I, Ozturk G B, et al. Determination of the impacts of mining activities on land cover and soil organic carbon:Altintepe gold mine case,Turkey[J]. Water,Air,& Soil Pollution, 2023, 234(4):272.
[14] Ruppen D, Runnalls J, Tshimanga R M, et al. Optical remote sen-sing of large-scale water pollution in Angola and DR Congo caused by the Catoca Mine tailings spill[J]. International Journal of Applied Earth Observation and Geoinformation, 2023,118:103237.
[15] 张浙, 卢然, 伍思扬, 等. 长江经济带矿山土壤重金属污染及健康风险评价[J]. 环境科学, 2022, 43(7):3763-3772.
Zhang Z, Lu R, Wu S Y, et al. Heavy metal pollution and health risk assessment of mine soil in Yangtze River economic belt[J]. Environmental Science, 2022, 43(7):3763-3772.
[16] KopeĆ A, Trybała P, Głᶏbicki D, et al. Application of remote sen-sing,GIS and machine learning with geographically weighted regression in assessing the impact of hard coal mining on the natural environment[J]. Sustainability, 2020, 12(22):9338.
[17] Liu H, Jiang Y, Misa R, et al. Ecological environment changes of mining areas around Nansi Lake with remote sensing monitoring[J]. Environmental Science and Pollution Research International, 2021, 28(32):44152-44164.
[18] Wang Y, Zhang D, Wang Y. Evaluation analysis of forest ecological security in 11 provinces (cities) of the Yangtze River economic belt[J]. Sustainability, 2021, 13(9):4845.
[19] 方传棣. 长江经济带矿产资源开发-经济-环境耦合协调发展研究[D]. 武汉: 中国地质大学, 2019.
Fang C D. Study on the coordinated development of mineral resources development-economy-environment coupling in the Yangtze River Economic Belt[D]. Wuhan: China University of Geosciences, 2019.
[20] 李海东, 高媛赟, 燕守广. 生态保护红线区废弃矿山生态修复监管[J]. 生态与农村环境学报, 2018, 34(8):673-677.
Li H D, Gao Y Y, Yan S G. Supervisory countermeasures of ecolo-gical restoration of abandoned mine areas in the ecological conservation redline area[J]. Journal of Ecology and Rural Environment, 2018, 34(8):673-677.
[21] 乔雪园, 吴海斌, 王殿常, 等. 长江经济带矿山生态治理的实施成效、问题与对策[J]. 中国矿业, 2022, 31(8):36-43.
Qiao X Y, Wu H B, Wang D C, et al., Achievements,problems and suggestions of mine ecological governance in the Yangtze River Economic Belt[J]. China Mining Magazine, 2022, 31(8):36-43.
[22] 殷亚秋, 杨金中, 汪洁, 等. 长江经济带废弃矿山占损土地遥感调查与生态修复对策[J]. 国土资源遥感, 2020, 32(2):170-176.doi:10.6046/gtzyyg.2020.02.22.
Yin Y Q, Yang J Z, Wang J, et al. Remote sensing survey of land occupied and damaged by abandoned mines along the Yangtze River Economic Belt and researchron ecological remediation countermeasures[J]. Remote Sensing for Natural Resources, 2020, 32(2):170-176.doi:10.6046/gtzyyg.2020.02.22.
[23] 孙娅琴, 邸宝刚, 安娜, 等. 长江经济带废弃露天矿山生态修复典型模式遥感监测:以湖北省为例[J]. 中国矿业, 2022, 31(12):50-57,63.
Sun Y Q, Di B G, An N, et al. Remote sensing monitoring of typical ecological restoration models of abandoned open-pit mines in the Yangtze River Economic Belt:A case study of Hubei Province[J]. China Mining Magazine, 2022, 31(12):50-57,63.
[24] Du S, Li W, Li J, et al. Open-pit mine change detection from high resolution remote sensing images using DA-UNet++ and object-based approach[J]. International Journal of Mining,Reclamation and Environment, 2022, 36(7):512-535.
[25] 唐晖, 邹娟, 尹向红, 等. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3):302-309.doi:10.6046/zrzyyg.2023075.
Tang H, Zou J, Yin X H, et al. River and lake sand mining in the Dongting Lake area:Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3):302-309.doi:10.6046/zrzyyg.2023075.
[26] 赵玉灵, 杨金中, 孙娅琴, 等. 油气矿山越界开采遥感监测方法探索[J]. 自然资源遥感, 2022, 34(2):30-36.doi:10.6046/zrzyyg.2021140.
Zhao Y L, Yang J Z, Sun Y Q, et al. A remote sensing method for judging the cross-border mining of oil and gas mines[J]. Remote Sensing for Natural Resources, 2022, 34(2):30-36.doi:10.6046/zrzyyg.2021140.
[27] 高俊华, 邹联学, 龙欢, 等. 基于遥感动态监测的吉林省矿山地质环境及生态修复变化特征分析[J]. 自然资源遥感, 2022, 34(3):240-248.doi:10.6046/zrzyyg.2021078.
Gao J H, Zou l X, Long H, et al. Analysis on characteristics of mine geological environment and ecologicarestoration changes in Jilin Province based on dynamic remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(3):240-248.doi:10.6046/zrzyyg.2021078
[28] Wang W, Liu R, Gan F, et al. Monitoring and evaluating restoration vegetation status in mine region using remote sensing data:Case study in Inner Mongolia,China[J]. Remote Sensing, 2021, 13(7):1350.
[29] Liu Y, Heng W, Yue H. Quantifying the coal mining impact on the ecological environment of Gobi open-pit mines[J]. Science of the Total Environment, 2023,883:163723.
[30] Messer L C, Jagai J S, Rappazzo K M, et al. Construction of an environmental quality index for public health research[J]. Environmental Health:A Global Access Science Source, 2014, 13(1):39.
[31] Liao X, Li W, Hou J. Application of GIS based ecological vulnerability evaluation in environmental impact assessment of master plan of coal mining area[J]. Procedia Environmental Sciences, 2013,18:271-276.
[32] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.
Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24):7853-7862.
[33] Dai X, Li W, Liu Z, et al. Effects of mining on urban environmental change:A case study of Panzhihua[J]. Remote Sensing, 2022, 14(23):6004.
[34] Tang H, Fang J, Xie R, et al. Impact of land cover change on a typical mining region and its ecological environment quality evaluation using remote sensing based ecological index (RSEI)[J]. Sustainability, 2022, 14(19):12694.
[35] Shan Y, Dai X, Li W, et al. Detecting spatial-temporal changes of urban environment quality by remote sensing-based ecological indices:A case study in Panzhihua City,Sichuan Province,China[J]. Remote Sensing, 2022, 14(17):4137.
[36] Wei Y, Qian J, Fan W, et al. Dynamic monitoring of ecological environment quality in Lijiang River Basin based on RSEI[J]. Science of Soil and Water Conservation, 2021, 19(1):122-131.
[37] 梅安新. 遥感导论[M]. 北京: 高等教育出版社, 2001.
Mei A X. An introduction to remote sensing[M]. Beijing: Higher Education Press, 2001.
[38] 徐涵秋, 邓文慧. MRSEI指数的合理性分析及其与RSEI指数的区别[J]. 遥感技术与应用, 2022, 37(1):1-7.
doi: 10.11873/j.issn.1004-0323.2022.1.0001
Xu H Q, Deng W H. Rationality analysis of MRSEI and its difference with RSEI[J]. Remote Sensing Technology and Application, 2022, 37(1):1-7.
[1] 李婷, 叶丽娟, 杨俊泉, 张静, 张云, 刘欢. 内蒙古中西部矿山地质环境遥感调查[J]. 自然资源遥感, 2025, 37(3): 45-53.
[2] 林欣源, 程扬健, 谢伟, 李传庆, 聂闻. 基于Google Earth Engine的不同开采模式下矿区土地利用变化生态环境效应[J]. 自然资源遥感, 2025, 37(3): 54-64.
[3] 汪媛媛, 臧协超, 许伟伟, 阳昌霞, 金洋, 任静华, 贺新星. 基于SRP的长江经济带江苏段生态脆弱性评价与分析[J]. 自然资源遥感, 2025, 37(3): 170-182.
[4] 张静, 胡晓佳, 王威, 陈东磊, 黄旭红, 杨俊泉. 张北地区自然资源及生态状况综合评价与分析[J]. 自然资源遥感, 2025, 37(2): 164-172.
[5] 奥勇, 汪雅, 王晓峰, 吴京盛, 张亦恒, 李雪娇. 2001—2020年间河南省郑州市生态环境质量时空变化及驱动因素分析[J]. 自然资源遥感, 2025, 37(1): 102-112.
[6] 赖仕久, 胡晋山, 康建荣, 王小兵. 煤炭资源型区域生态环境演变研究——以山西省为例[J]. 自然资源遥感, 2024, 36(4): 62-74.
[7] 邢宇, 王静雅, 杨金中, 陈栋, 杜晓敏, 郭靖凯, 宋丽聪. 全国废弃露天矿山采矿用地分布状况与存在问题[J]. 自然资源遥感, 2024, 36(2): 21-26.
[8] 黄卓, 孙建国, 冯春月, 徐鹏, 杨浩, 侯文兵. 基于生态系统服务变化的河西地区生态修复分区[J]. 自然资源遥感, 2023, 35(4): 236-243.
[9] 李光哲, 王浩, 曹银璇, 张晓宇, 宁晓刚. 长株潭城市群生态环境质量时空演变及影响因素分析[J]. 自然资源遥感, 2023, 35(4): 244-254.
[10] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[11] 高俊华, 邹联学, 龙欢, 楚水滔. 基于遥感动态监测的吉林省矿山地质环境及生态修复变化特征分析[J]. 自然资源遥感, 2022, 34(3): 240-248.
[12] 骆泓鉴, 明冬萍, 徐录. 基于GEE的遥感生态指数时序计算[J]. 自然资源遥感, 2022, 34(2): 271-277.
[13] 杨显华, 魏鹏, 吕军, 韩磊, 石浩林, 刘智. 基于多源遥感的采空塌陷识别技术应用研究[J]. 自然资源遥感, 2022, 34(2): 162-167.
[14] 殷亚秋, 蒋存浩, 鞠星, 陈科玚, 汪洁, 邢宇. 海南岛2018年矿山地质环境遥感评价和生态修复对策[J]. 自然资源遥感, 2022, 34(2): 194-202.
[15] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发