Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 107-117    DOI: 10.6046/zrzyyg.2024288
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
融合光学与LiDAR数据的实景三维模型山地植被制图
张金华1,2,3(), 胡忠文1,2,3(), 张英慧1,2,3, 张谦1,2,3, 王敬哲1,4, 邬国锋1,2,3
1.深圳大学自然资源部大湾区地理环境监测重点实验室,深圳 518060
2.深圳大学广东省城市空间信息工程重点实验室,深圳 518060
3.深圳大学建筑与城市规划学院,深圳 518060
4.深圳职业技术大学人工智能学院,深圳 518060
Mapping mountain vegetation using realistic 3D models integrating optical images and light detection and ranging data
ZHANG Jinhua1,2,3(), HU Zhongwen1,2,3(), ZHANG Yinghui1,2,3, ZHANG Qian1,2,3, WANG Jingzhe1,4, WU Guofeng1,2,3
1. MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Shenzhen University, Shenzhen 518060, China
2. Guangdong Key Laboratory of Urban Informatics, Shenzhen University, Shenzhen 518060, China
3. School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China
4. School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen 518060, China
全文: PDF(5551 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

植被分布信息是开展自然资源保护、生态系统健康评价的重要数据基础。山区地形起伏大、植被类型结构复杂,传统植被遥感分类基于二维影像进行制图,无法反映植被垂直结构和三维空间分布特征。为探索实景三维模型在植被精细分类与制图上的应用潜力,该文提出了一种融合光学影像与激光雷达(light detecting and ranging,LiDAR)数据的实景三维模型山地植被制图方法。选取广东内伶仃岛为研究区,利用无人机航测获取的实景三维模型、多光谱与LiDAR点云构建多源数据集,开展多源数据配准和特征提取; 进一步采用LightGBM算法实现植被精细分类并评估多源数据特征的分类性能; 最后,通过二维制图向三维模型的映射获得植被语义三维模型。结果表明,实景三维模型可以有效区分植被类型,其与多光谱、LiDAR数据的特征融合能更全面地描述山区地形与植被结构特性,二维分类总精度比仅使用单一数据提升4.28%~11.29%。基于实景三维模型的植被三维制图总精度达到92.06%,Kappa系数为0.89,能够真实直观地反映山地植被的立体层次分布规律,提高植被精细信息提取的准确性。研究验证了实景三维模型与多源数据的融合在自然资源监测中的巨大潜力,为区域植被精细化和立体化信息提取提供新的思路和方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张金华
胡忠文
张英慧
张谦
王敬哲
邬国锋
关键词 实景三维模型三维制图植被精细分类山地植被LiDAR多光谱多源数据融合    
Abstract

Vegetation distribution serves as a crucial foundation for natural resource conservation and ecosystem health assessment. In mountainous regions, substantial terrain undulations and complex vegetation types complicate the mapping process. Moreover, the traditional remote sensing-based vegetation classification, whose mapping relies on 2D imagery, fails to depict the vertical structure and 3D spatial distribution of vegetation. To investigate the potential of realistic 3D models in fine-scale vegetation classification and mapping, this study proposed a realistic 3D model-based mapping approach for mountain vegetation by integrating optical images and light detection and ranging (LiDAR) data. Focusing on Neilingding Island in Guangdong, this study constructed a multi-source dataset using realistic 3D models, multispectral images, and LiDAR point clouds acquired by unmanned aerial vehicle (UAV)-based measurements, followed by data registration and feature extraction. Subsequently, the LightGBM algorithm was employed to achieve fine-scale vegetation classification and to assess the classification performance of multi-source data features. Finally, semantic 3D mesh models of vegetation were generated by projecting the 2D vegetation maps onto the 3D models. The results indicate that realistic 3D models can effectively distinguish vegetation types. Their combination with multispectral and LiDAR data provides a more comprehensive description of the topography and vegetation structures in mountainous areas. Compared to using a single data source, this approach achieves an increase in the overall accuracy (OA) of 2D classification by 4.28% to 11.29%. Concurrently, the OA of the 3D mapping based on realistic 3D models reached 92.06%, with a Kappa coefficient of 0.89. This approach can reflect the accurate, visualized, 3D distribution patterns of mountain vegetation and improve the accuracy of fine-scale vegetation information extraction. This study demonstrates the significant potential of 3D model-multisource data integration for natural resource monitoring and provides novel ideas and methods for fine-scale and 3D information extraction of regional vegetation.

Key wordsrealistic 3D model    3D mapping    fine-scale classification of vegetation    mountain vegetation    light detection and ranging (LiDAR)    multispectral    multi-source data fusion
收稿日期: 2024-09-02      出版日期: 2025-12-31
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“融合多/高光谱影像的实景三维模型超面元立体层次化解译”(42471351);深圳市基础研究面上项目“融合实景三维模型与LiDAR点云的植被精细分类与结构参数反演研究”(JCYJ20230808105201004)
通讯作者: 胡忠文(1986-),男,博士,副教授/研究员,主要从事高分辨率影像分割、海岸带环境遥感应用研究。Email: zwhoo@szu.edu.cn
作者简介: 张金华(2000-),硕士研究生,主要从事实景三维模型解译与应用研究。Email: kivacheung@163.com
引用本文:   
张金华, 胡忠文, 张英慧, 张谦, 王敬哲, 邬国锋. 融合光学与LiDAR数据的实景三维模型山地植被制图[J]. 自然资源遥感, 2025, 37(6): 107-117.
ZHANG Jinhua, HU Zhongwen, ZHANG Yinghui, ZHANG Qian, WANG Jingzhe, WU Guofeng. Mapping mountain vegetation using realistic 3D models integrating optical images and light detection and ranging data. Remote Sensing for Natural Resources, 2025, 37(6): 107-117.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024288      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/107
Fig.1  研究区位置
Fig.2  多源数据配准示意图
Fig.3  技术路线
数据源 特征类型 特征参数
实景三维模型 几何特征 线性度、平面度、球形度、全方差、各向异性、曲率变化、特征熵、特征值总和、垂直度、粗糙度、体积密度、表面密度
纹理特征 均值、方差、能量、同质性、对比度、不相似性、相关性、熵
多光谱 光谱波段 蓝、绿、红、红边、近红外、近红外-940
植被指数 ARI1,MCARI,NDVI,NLI,RGRI
LiDAR 地形特征 DSM,DEM,CHM,Slope,Aspect
高度特征 累积高度百分位数(1%,10%,20%,30%,40%,50%,60%,70%,80%,90%,99%)、平均绝对偏差、冠层起伏率、变异系数、峰度、二次幂平均、偏斜度、方差
多源数据融合 以上所有特征的组合
Tab.1  特征集描述
Fig.4  三维语义制图示意图
数据 特征 F1/% OA/%
相思林 荔枝林 混合林 灌草丛 建筑 裸地 水体
实景三维模型 几何 75.29 87.68 71.95 86.08 90.37 86.8 98.59 85.28
纹理 86.18 80.33 76.53 81.76 88.33 86.61 98.43 85.46
几何+纹理 92.19 90.80 89.25 91.97 93.51 93.39 99.65 92.97
多光谱 波段 88.23 78.25 71.29 88.99 90.73 91.71 96.42 86.60
指数 74.80 72.57 64.47 83.83 81.98 87.84 94.3 80.07
波段+指数 89.40 80.11 73.94 90.80 93.31 93.86 97.39 88.46
LiDAR 地形 86.78 96.38 82.86 92.70 93.29 91.39 97.24 91.53
高度 90.36 92.98 81.10 88.77 90.17 88.02 89.59 88.81
地形+高度 94.15 97.90 90.60 96.09 95.83 95.28 98.47 95.47
多源数据融合 所有特征 99.51 99.90 99.3 99.85 99.84 99.86 99.99 99.75
Tab.2  不同数据特征的分类精度对比
Fig.5  不同数据的植被精细分类图
Fig.6  分类精度与特征重要性的关系
Fig.7  三维制图结果(局部)
类别 相思林/m2 荔枝林/m2 混合林/m2 灌草丛/m2 建筑/m2 裸地/m2 水体/m2 PA/%
相思林 7 589.17 3.22 887.19 0.67 7.37 5.96 0.00 89.35
荔枝林 0.57 2 695.00 116.16 3.09 96.51 0.00 0.00 92.57
混合林 273.48 18.97 10 865.33 134.58 110.48 42.96 0.00 94.93
灌草丛 3.79 3.29 187.89 1 504.19 27.87 11.43 0.00 86.52
建筑 0.72 1.90 8.00 0.83 947.26 19.21 0.00 96.86
裸地 72.38 5.40 74.17 19.10 36.73 1 514.38 4.81 87.69
水体 0.00 0.00 0.00 0.00 0.00 19.14 359.28 94.94
UA/% 95.58 98.8 89.51 90.48 77.25 93.88 98.68
OA/% 92.06
Kappa 0.89
Tab.3  三维制图混淆矩阵
Fig.8  全场景实景三维模型与语义三维模型
植被类型 平均海拔/m 平均坡度/(°) 二维面积/m2 二维面积占比/% 三维面积/m2 三维面积占比/% 三维面积/二维面积
相思林 51.34 25.26 84 658.3 19.04 349 930.5 28.79 4.13
荔枝林 7.68 15.32 12 452.8 2.80 17 616.1 1.45 1.41
混合林 42.55 25.73 320 953.0 72.18 803 781.6 66.14 2.50
灌草丛 7.97 20.10 26 605.3 5.98 43 982.0 3.62 1.65
Tab.4  不同植被类型的空间分布参数
[1] De Frenne P, Zellweger F, Rodríguez-Sánchez F, et al. Global buffering of temperatures under forest canopies[J]. Nature Ecology and Evolution, 2019, 3(5):744-749.
doi: 10.1038/s41559-019-0842-1
[2] Seidl R, Schelhaas M J, Rammer W, et al. Increasing forest disturbances in Europe and their impact on carbon storage[J]. Nature Climate Change, 2014, 4(9):806-810.
pmid: 25737744
[3] Lu Y, Wang L. How to Automate timely large-scale mangrove mapping with remote sensing[J]. Remote Sensing of Environment, 2021,264:112584.
[4] 明義森, 刘启航, 柏荷, 等. 利用光学和SAR遥感数据的若尔盖湿地植被分类与变化监测[J]. 遥感学报, 2023, 27(6):1414-1425.
Ming Y S, Liu Q H, Bai H, et al. Classification and change detection of vegetation in the Ruoergai Wetland using optical and SAR remote sensing data[J]. National Remote Sensing Bulletin, 2023, 27(6):1414-1425.
doi: 10.11834/jrs.20221767
[5] Marselis S M, Tang H, Armston J D, et al. Distinguishing vegetation types with airborne waveform lidar data in a tropical forest-savanna mosaic:A case study in Lopé National Park,Gabon[J]. Remote Sensing of Environment, 2018,216:626-634.
[6] 吴培强, 任广波, 张程飞, 等. 无人机多光谱和LiDAR的红树林精细识别与生物量估算[J]. 遥感学报, 2022, 26(6):1169-1181.
Wu P Q, Ren G B, Zhang C F, et al. Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR[J]. National Remote Sensing Bulletin, 2022, 26(6):1169-1181.
doi: 10.11834/jrs.20221484
[7] 张妮娜, 张珂, 李运平, 等. 中国南方典型湿润山区植被类型的无人机多光谱遥感机器学习分类研究[J]. 遥感技术与应用, 2023, 38(1):163-172.
doi: 10.11873/j.issn.1004-0323.2023.1.0163
Zhang N N, Zhang K, Li Y P, et al. Study on Machine Learning methods for vegetation classification in typical humid mountainous areas of south China based on the UAV multispectral remote sensing[J]. Remote Sensing Technology and Application, 2023, 38(1):163-172.
[8] 郭逸飞, 吴田军, 骆剑承, 等. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7):1406-1419.
doi: 10.12082/dqxxkx.2022.210594
Guo Y F, Wu T J, Luo J C, et al. Remote sensing mapping of mountain vegetation via uncertainty-based iterative optimization[J]. Journal of Geo-Information Science, 2022, 24(7):1406-1419.
[9] 杨丹, 周亚男, 杨先增, 等. LSTM支持下时序Sentinel-1A数据的太白山区植被制图[J]. 地球信息科学学报, 2020, 22(12):2445-2455.
doi: 10.12082/dqxxkx.2020.200338
Yang D, Zhou Y N, Yang X Z, et al. Vegetation mapping in Taibai Mountain area supported by LSTM with time series sentinel-1A data[J]. Journal of Geo-Information Science, 2020, 22(12):2445-2455.
[10] 张帆, 黄先锋, 高云龙, 等. 实景三维中国建设技术大纲(2021版)解读与思考[J]. 测绘地理信息, 2021, 46(6):171-174.
Zhang F, Huang X F, Gao Y L, et al. Interpretation and reflection on technology outline of national 3D real scene(2021 edition)[J]. Journal of Geomatics, 2021, 46(6):171-174.
[11] 曲俸磊, 胡忠文, 张英慧, 等. 基于多视角二维投影的实景三维模型解译[J]. 地球信息科学学报, 2024, 26(3):654-665.
doi: 10.12082/dgxxkx.2024.230520
Qu F L, Hu Z W, Zhang Y H, et al. Classification of textured 3D mesh models based on multiview 2D mapping[J]. Journal of Geo-Information Science, 2024, 26(3):654-665.
[12] Rouhani M, Lafarge F, Alliez P. Semantic segmentation of 3D textured meshes for urban scene analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,123:124-139.
[13] Laupheimer D, Haala N. Multi-modal semantic mesh segmentation in urban scenes[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2022,V-2-2022:267-274.
[14] 董梦成, 谢科, 黄惠. 城区场景建筑物单体分割与结构重建耦合研究[J]. 中国科学:信息科学, 2024, 54(2):281-300.
Dong M C, Xie K, Huang H. Coupled study on instance segmentation and structural reconstruction of buildings in 3D urban scenes[J]. Scientia Sinica (Informationis), 2024, 54(2):281-300.
[15] 张荣庭, 张广运, 尹继豪. 复杂城市动态图卷积网络三维场景语义分割法[J]. 测绘学报, 2023, 52(10):1703-1713.
doi: 10.11947/j.AGCS.2023.20220466
Zhang R T, Zhang G Y, Yin J H. Semantic segmentation method of 3D scenes using dynamic graph CNN for complex city[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10):1703-1713.
doi: 10.11947/j.AGCS.2023.20220466
[16] Wu Z, Ni M, Hu Z, et al. Mapping invasive plant with UAV-derived 3D mesh model in mountain area—a case study in Shenzhen Coast,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,77:129-139.
[17] Jurado J M, Ortega L, Cubillas J J, et al. Multispectral mapping on 3D models and multi-temporal monitoring for individual characterization of olive trees[J]. Remote Sensing, 2020, 12(7):1106.
doi: 10.3390/rs12071106
[18] 乔雪婷, 张娟娟, 李文斌, 等. 基于无人机遥感技术的广东内伶仃岛植被类型划分与植被图[J]. 中山大学学报(自然科学版), 2022, 61(4):22-30.
Qiao X T, Zhang J J, Li W B, et al. Vegetation classification and vegetation map of Neilingding Island in Guangdong Province based on UAV remote sensing technology[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022, 61(4):22-30.
[19] Martinez A, Garcia-Consuegra J, Abad F. A correlation-symbolic approach to automatic remotely sensed image rectification[C]// IEEE 1999 International Geoscience and Remote Sensing Symposium.IGARSS’99.June 28 - July 2,1999, Hamburg,Germany.IEEE, 2002:336-338.
[20] Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256.
doi: 10.1109/34.121791
[21] Weinmann M, Jutzi B, Hinz S, et al. Semantic point cloud interpretation based on optimal neighborhoods,relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:286-304.
[22] Ferreira M P, Wagner F H, Aragão L E O C, et al. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,149:119-131.
[23] 陈树新, 刘炳杰, 王海熠, 等. 结合可见光植被指数和分水岭算法的单木树冠信息提取[J]. 遥感技术与应用, 2024, 39(1):34-44.
doi: 10.11873/j.issn.1004-0323.2024.1.0034
Chen S X, Liu B J, Wang H Y, et al. Extraction of individual tree crown based on UAV tilt photogrammetry[J]. Remote Sensing Technology and Application, 2024, 39(1):34-44.
[24] Zhang W, Qi J, Wan P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501.
doi: 10.3390/rs8060501
[25] 鄢敏, 夏永华, 王冲, 等. 无人机点云与图像跨模态混合融合的乔木林单木尺度树种分类研究[J]. 遥感技术与应用, 2024, 39(1):87-97.
doi: 10.11873/j.issn.1004-0323.2024.1.0087
Yan M, Xia Y H, Wang C, et al. Study on classification of Arbor tree species at single tree scale based on cross-modal hybrid fusion of UAV point cloud and image[J]. Remote Sensing Technology and Application, 2024, 39(1):87-97.
[26] Ke G, Meng Q, Finley T, et al. LightGBM[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems.December 4 - 9,2017,Long Beach,California,USA.ACM, 2017:3149-3157.
[27] 史飞飞, 高小红, 肖建设, 等. 基于集成学习和多时相遥感影像的枸杞种植区分类[J]. 自然资源遥感, 2022, 34(1):115-126.doi:10.6046/zrzyyg.2021064.
Shi F F, Gao X H, Xiao J S, et al. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1):115-126.doi:10.6046/zrzyyg.2021064.
[28] Qin H, Zhou W, Yao Y, et al. Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR,hyperspectral,and ultrahigh-resolution RGB data[J]. Remote Sensing of Environment, 2022,280:113143.
[29] Alonzo M, Bookhagen B, Roberts D A. Urban tree species mapping using hyperspectral and lidar data fusion[J]. Remote Sensing of Environment, 2014,148:70-83.
[30] 徐逸, 甄佳宁, 蒋侠朋, 等. 无人机遥感与XGBoost的红树林物种分类[J]. 遥感学报, 2021, 25(3):737-752.
Xu Y, Zhen J N, Jiang X P, et al. Mangrove species classification with UAV-based remote sensing data and XGBoost[J]. National Remote Sensing Bulletin, 2021, 25(3):737-752.
doi: 10.11834/jrs.20210281
[1] 高峰, 张弘怀, 周伟, 王星星, 孙丽影, 许文新, 吴迪. 浙江省宁波地区地质灾害隐患点遥感综合监测识别[J]. 自然资源遥感, 2025, 37(6): 263-274.
[2] 李英龙, 邓毓弸, 孔赟珑, 陈静波, 孟瑜, 刘帝佑. 基于全色-多光谱双流卷积网络的端到端地物分类方法[J]. 自然资源遥感, 2025, 37(5): 152-161.
[3] 马敏, 左震, 韩燕东, 邱野, 乔牡冬. 松嫩平原土壤盐碱化地表基质成因研究[J]. 自然资源遥感, 2025, 37(2): 128-139.
[4] 王宗伟, 陆敏燕, 范仪琳. 联合激光点云与立体卫星影像的露滩地区精准测绘[J]. 自然资源遥感, 2024, 36(4): 135-141.
[5] 陈刚, 郝社锋, 蒋波, 喻永祥, 车增光, 刘汉湖, 杨容浩. 基于机载LiDAR技术植被茂密区小型滑坡识别与评价[J]. 自然资源遥感, 2024, 36(3): 196-205.
[6] 王丽英, 马旭伟, 有泽, 王世超, CAMARA Mahamadou. 基于多元GMM的机载多光谱LiDAR点云空谱联合分类[J]. 自然资源遥感, 2023, 35(3): 88-96.
[7] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[8] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[9] 高凯旋, 焦海明, 王新闯. 融合影像纹理、光谱与地形特征的森林冠顶高反演模型[J]. 国土资源遥感, 2020, 32(3): 63-70.
[10] 孟蕾, 林超. 机载LiDAR技术生成DEM的质量检查与解决方案探讨[J]. 国土资源遥感, 2020, 32(1): 7-12.
[11] 朱军桃, 王雷, 赵传, 郑旭东. 基于区域生长算法的复杂建筑物屋顶点云分割[J]. 国土资源遥感, 2019, 31(4): 20-25.
[12] 张永梅, 孙海燕, 胥玉龙. 一种改进的基于超像素的多光谱图像分割方法[J]. 国土资源遥感, 2019, 31(1): 58-64.
[13] 闫利, 李瑶, 谢洪. 基于机载与车载LiDAR数据的LoD3城市建筑物模型自动重建[J]. 国土资源遥感, 2018, 30(4): 97-101.
[14] 尹峰, 孟祥超, 梁鹏. 一种国产高分卫星遥感影像变分融合方法[J]. 国土资源遥感, 2018, 30(2): 100-106.
[15] 郑鸿瑞, 徐志刚, 甘乐, 陈玲, 杨金中, 杜培军. 合成孔径雷达遥感地质应用综述[J]. 国土资源遥感, 2018, 30(2): 12-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发