Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (2): 100-106    DOI: 10.6046/gtzyyg.2018.02.14
     技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种国产高分卫星遥感影像变分融合方法
尹峰1(), 孟祥超2(), 梁鹏1
1.湖北省国土资源研究院,武汉 430071
2. 武汉大学资源与环境科学学院,武汉 430079
A variational fusion method for remote sensing images of China’s domestic high-resolution satellites
Feng YIN1(), Xiangchao MENG2(), Peng LIANG1
1. Hubei Institute of Land and Resources, Wuhan 430071, China
2.School of Resources and Environmental Sciences, Wuhan University, Wuhan 430079, China
全文: PDF(4022 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

由于现有全色/多光谱融合方法对国产高分卫星遥感影像数据特点考虑不足,提出一种针对国产高分卫星遥感影像的变分融合方法。该方法充分考虑融合影像波段间光谱关系的保持,构建基于光谱梯度的三维光谱高保真模型,并针对国产高分卫星全色影像存在模糊降质的数据特点,发展顾及模糊降质的空间增强模型。在此基础上,结合影像先验知识建立融合目标函数,最后采用梯度下降法优化求解得到融合影像。通过高分一号(GF-1)和高分二号(GF-2)影像数据对提出的融合方法进行实验验证,并与典型GS,PRACS和ATWT-M3等融合方法分别从定性和定量2方面进行比较分析。实验结果表明,该融合方法充分考虑了国产高分卫星影像数据特点,在对照实验的几种方法中得到了最优的融合结果,可在有效提升多光谱影像空间分辨率的同时,很大程度上保持原有的光谱信息。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹峰
孟祥超
梁鹏
关键词 融合多光谱影像全色影像变分遥感    
Abstract

The current panchromatic (PAN) / multispectral (MS) fusion methods do not comprehensively consider the characteristics of the remote sensing images from China’s domestic high-resolution satellites. Therefore, this paper proposes a variational fusion method for China’s domestic high-resolution images. On the one hand, the three-dimensional spectral high-fidelity model based on the spectral gradient is proposed by comprehensive consideration of the relations between the spectral bands. On the other hand, according to the existing blurring characteristics of the PAN image acquired by China’s domestic high-resolution satellites, the spatial enhancement model in consideration of the blurring degradation is developed. Finally, the fusion energy function is constructed by combining the prior knowledge of the remote sensing images, and it is solved by the classical gradient decent methods to obtain the fused image. The proposed method was tested and verified by the Gaofen-1 (GF-1) and Gaofen-2 (GF-2) satellite datasets. In addition, the popular GS, PRACS, and ATWT-M3 methods were applied for comparison from both qualitative and quantitative aspects. The experimental results show that the proposed variational high-fidelity PAN/MS fusion method comprehensively considers the characteristics of China’s domestic satellites, and hence it can maximally preserve the spectral information while effectively improve the spatial resolution of the MS images, thus achieving the best fused results.

Key wordsfusion    multispectral image    panchromatic image    variational model    remote sensing
收稿日期: 2016-10-13      出版日期: 2018-05-30
:  TP751.1  
基金资助:湖北省国土资源科研专项项目“基于多源高分遥感数据的多层次土地监测监管关键技术与应用研究”(编号: ETZ2016A16)
通讯作者: 孟祥超
引用本文:   
尹峰, 孟祥超, 梁鹏. 一种国产高分卫星遥感影像变分融合方法[J]. 国土资源遥感, 2018, 30(2): 100-106.
Feng YIN, Xiangchao MENG, Peng LIANG. A variational fusion method for remote sensing images of China’s domestic high-resolution satellites. Remote Sensing for Land & Resources, 2018, 30(2): 100-106.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.02.14      或      https://www.gtzyyg.com/CN/Y2018/V30/I2/100
Fig.1  GF-1模拟实验结果
Fig.2  GF-2模拟实验结果
评价指标 融合方法
GS方法 PRACS方法 ATWT-M3方法 基于传统光谱
保真项融合方法
本文方法
CC 0.841 7 0.857 9 0.860 7 0.884 8 0.894 0
PSNR 24.246 5 25.101 3 25.112 1 25.394 7 25.610 3
ERGAS 6.340 5 5.838 7 5.891 9 5.580 7 5.462 1
SAM 4.885 5 4.316 0 4.574 7 4.529 5 4.204 1
Tab.1  GF-1模拟实验定量评价
评价指标 融合方法
GS方法 PRACS方法 ATWT-M3方法 基于传统光谱
保真项融合方法
本文方法
CC 0.979 4 0.976 6 0.973 3 0.990 1 0.990 8
PSNR 39.291 9 39.194 3 38.721 3 43.675 0 43.800 5
ERGAS 0.672 1 0.707 4 0.779 7 0.423 6 0.416 2
SAM 0.547 5 0.530 2 0.645 7 0.459 1 0.437 9
Tab.2  GF-2模拟实验定量评价
Fig.3  GF-1真实实验结果
Fig.4  GF-2真实实验结果
评价指标 融合方法
GS方法 PRACS方法 ATWT-M3方法 基于传统光谱
保真项融合方法
本文方法
CC 0.798 0 0.996 4 0.994 2 0.997 4 0.998 0
PSNR 25.913 0 44.590 5 42.419 0 45.775 1 46.892 2
ERGAS 4.239 4 0.542 2 0.697 5 0.449 6 0.403 2
SAM 6.218 9 0.426 4 0.581 9 0.406 0 0.328 7
Tab.3  GF-1真实实验定量评价
评价指标 融合方法
GS方法 PRACS方法 ATWT-M3方法 基于传统光谱
保真项融合方法
本文方法
CC 0.948 4 0.988 1 0.991 4 0.992 0 0.994 0
PSNR 30.268 1 38.633 9 39.046 6 39.441 1 40.442 4
ERGAS 1.153 5 0.491 7 0.492 1 0.445 9 0.391 6
SAM 0.349 9 0.290 2 0.355 0 0.418 2 0.250 8
Tab.4  GF-2真实实验定量评价
[1] Shen H F, Meng X C, Zhang L P . An integrated framework for the spatio-temporal-spectral fusion of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(12):7135-7148.
doi: 10.1109/TGRS.2016.2596290
[2] 张良培, 沈焕锋 . 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016,20(5):1050-1061.
Zhang L P, Shen H F . Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016,20(5):1050-1061.
[3] Aiazzi B, Alparone L, Baronti S , et al. Twenty-five years of pansharpening:A critical review and new developments[M] //Chen C H.Signal and Image Processing for Remote Sensing. 2nd edition.Boca Raton,FL: CRC Press, 2012: 533-548.
[4] Vivone G, Alparone L, Chanussot J , et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,53(5):2565-2586.
doi: 10.1109/IGARSS.2014.6946389
[5] Chavez Jr P S, Sides S C, Anderson J A . Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic[J]. Photogrammetric Engineering and Remote Sensing, 1991,57(3):295-303.
doi: 10.1163/157006707X222768
[6] Laben C A, Brower B V .Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening:United States, 6011875[P].2000 -01-04.
[7] Meng X C, Li J, Shen H F , et al. Pansharpening with a guided filter based on three-layer decomposition[J]. Sensors, 2016,16(7):1068.
doi: 10.3390/s16071068 pmid: 4970115
[8] Ranchin T, Wald L . Fusion of high spatial and spectral resolution images:The ARSIS concept and its implementation[J]. Photogrammetric Engineering and Remote Sensing, 2000,66(1):49-61.
doi: 10.1002/2014WR016042
[9] Alparone L, Aiazzi B . MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(5):591-596.
doi: 10.14358/PERS.72.5.591
[10] 李文静, 温文鹏, 王清和 . 基于Contourlet变换的遥感图像融合方法研究[J]. 国土资源遥感, 2015,27(2):44-50.doi: 10.6046/gtzyyg.2015.02.07.
doi: 10.6046/gtzyyg.2015.02.07
Li W J, Wen W P, Wang Q H . A study of remote sensing image fusion method based on Contourlet transform[J]. Remote Sensing for Land and Resources, 2015,27(2):44-50.doi: 10.6046/gtzyyg.2015.02.07.
[11] Tu T M, Su S C, Shyu H C , et al. A new look at IHS-like image fusion methods[J]. Information Fusion, 2001,2(3):177-186.
doi: 10.1016/S1566-2535(01)00036-7
[12] Meng X C, Shen H F, Li H F, et al. Improving the spatial resolution of hyperspectral image using panchromatic and multispectral images:An integrated method [C]//Proceedings of the 7th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS).Tokyo,Japan:IEEE, 2015: 1-4.
[13] 孟祥超, 沈焕锋, 张洪艳 , 等. 基于梯度一致性约束的多光谱/全色影像最大后验融合方法[J]. 光谱学与光谱分析, 2014,34(5):1332-1337.
Meng X C, Shen H F, Zhang H Y , et al. Maximum a posteriori fusion method based on gradient consistency constraint for multispectral/panchromatic remote sensing images[J]. Spectroscopy and Spectral Analysis, 2014,34(5):1332-1337.
[14] Meng X C, Shen H F, Zhang L P, et al. A unified framework for spatio-temporal-spectral fusion of remote sensing images [C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Milan,Italy:IEEE, 2015: 2584-2587.
[15] Zhang L P, Shen H F, Gong W , et al. Adjustable model-based fusion method for multispectral and panchromatic images[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics), 2012,42(6):1693-1704.
doi: 10.1109/TSMCB.2012.2198810 pmid: 22736648
[16] Ballester C, Caselles V, Igual L , et al. A variational model for P+XS image fusion[J]. International Journal of Computer Vision, 2006,69(1):43-58.
doi: 10.1007/s11263-006-6852-x
[17] Palsson F, Sveinsson J R, Ulfarsson M O . A new pansharpening algorithm based on total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(1):318-322.
doi: 10.1109/LGRS.2013.2257669
[18] Shen H F, Zhang L P, Huang B , et al. A MAP approach for joint motion estimation,segmentation, and super resolution[J]. IEEE Transactions on Image Processing, 2007,16(2):479-490.
doi: 10.1109/TIP.2006.888334 pmid: 17269640
[19] Li H F, Zhang L P, Shen H F , et al. A variational gradient-based fusion method for visible and SWIR imagery[J]. Photogrammetric Engineering and Remote Sensing, 2012,78(9):947-958.
doi: 10.14358/PERS.78.9.947
[20] Wang Z, Bovik A C . Mean squared error:Love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 2009,26(1):98-117.
doi: 10.1109/MSP.2008.930649
[21] Wald L. Quality of high resolution synconfproced images: Is there a simple criterion? [C]//Proceedings of the 3rd Conference “Fusion of Earth Data:Merging Point Measurements,Raster Maps and Remotely Sensed Images”. Sophia Antipolis,France:SEE/URISCA, 2000: 99-103.
[22] Choi J, Yu K, Kim Y . A new adaptive component-substitution-based satellite image fusion by using partial replacement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(1):295-309.
doi: 10.1109/TGRS.2010.2051674
[23] Wald L, Ranchin T, Mangolini M . Fusion of satellite images of different spatial resolutions:Assessing the quality of resulting images[J]. Photogrammetric Engineering And Remote Sensing, 1997,63(6):691-699.
doi: 10.1016/S0924-2716(97)00008-7
[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[5] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[6] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[7] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[8] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[9] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[10] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[11] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发