Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1994, Vol. 6 Issue (4) : 20-22     DOI: 10.6046/gtzyyg.1994.04.04
Applied Research |
USING TM DATA TO IDENTIFY SURFACIAL GEOLOGICAL FEATURE OF THE GOLD DEPOSIT ──A Case Study in Er daogou Gold Mine
Ma Jianwen1, Zhang Qidao1, Xu Ruisong2, Ma Yaoliang2
1. Tianjin Geological Academy 300061;
2. Guangzhou New Geo-Tech Institute Science, Academy 510640
Download: PDF(800 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

TM data because of its multispectral bands and continous spacial coverage as well as good price, is widely used in small and middle scale geological mapping. This project is a case study for using TM data to map surfacial characteristics of ore deposit modle for large scale gold mining district prospecting.The result image is overlayed by 1:10000 geology map, gold bearing vein map, and 1:2000 Cu secondary dispersion halo map. It is conclued that 70% of geological unit is matched, 100% of gold bearing vein and halo are well overlayed.

Keywords Imaging spectrometer      Atmospheric effect      Atmospheric correction     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Su-Ming
WANG Run-Sheng
LIU Sherng-Wei
ZHANG Kai
WANG Qing-Song
Cite this article:   
YANG Su-Ming,WANG Run-Sheng,LIU Sherng-Wei, et al. USING TM DATA TO IDENTIFY SURFACIAL GEOLOGICAL FEATURE OF THE GOLD DEPOSIT ──A Case Study in Er daogou Gold Mine[J]. REMOTE SENSING FOR LAND & RESOURCES, 1994, 6(4): 20-22.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1994.04.04     OR     https://www.gtzyyg.com/EN/Y1994/V6/I4/20


[1] 王志等.辽宁省二道沟金矿地质及成因.长春地质学院学报, 1989, 19(3):

[2] 徐万臣等.二道沟金矿床中黄铁矿的标型特征.辽宁地质, 1991(4)

[1] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[2] Zhenyu SHEN, Xiaohong GAO, Min TANG. Comparison and accuracy verification for atmospheric correction of SPOT6 image in high altitude complex terrain area[J]. Remote Sensing for Land & Resources, 2020, 32(1): 81-89.
[3] Dongya CHENG, Xudong LI. Comparison of change characteristics of NDVI in mountain basin before and after atmospheric correction[J]. Remote Sensing for Land & Resources, 2020, 32(1): 90-97.
[4] Ling CHEN, Li CHEN, Wei LI, Jianyu LIU. Atmospheric correction of Worldview3 image based on FLAASH model[J]. Remote Sensing for Land & Resources, 2019, 31(4): 26-31.
[5] Piyuan YI, Hanbo LI, Peng TONG, Yingjun ZHAO, Chuan ZHANG, Feng TIAN, Yongfei CHE, Wenhuan WU. Atmospheric radiation correction of airborne hyperspectral image by adding elevation factor[J]. Remote Sensing for Land & Resources, 2019, 31(2): 66-72.
[6] Bin YANG, Dan LI, Guisheng GAO, Cai CHEN, Lei WANG. Processing analysis of Sentinel-2A data and application to arid valleys extraction[J]. Remote Sensing for Land & Resources, 2018, 30(3): 128-135.
[7] KONG Jinling, YANG Jing, SUN Xiaoming, YANG Shu, LIU Futian, DU Dong. Atmospheric correction and suspended sediment concentration retrieval based on multi-spectral remote sensing images: A case study of Caofeidian offshore area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 130-137.
[8] ZHANG Yue, XIAO Yu, CHANG Jingjing, LIU Jian, WANG Yaqiong, HE Chunyan, HE Bing. Effects of atmospheric correction on extracting cyanobacteria bloom information based on remote sensing indices[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 7-12.
[9] DIAN Yuanyong, FANG Shenghui, XU Yongrong. An atmospheric correction algorithm for hyperspectral imagery with collaborative retrieval of aerosol optical thickness and water vapor content[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 22-28.
[10] FANG Shenghui, LE Yuan, YANG Guang. Inversion of chlorophyll content based on HyperScan imaging spectral data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 40-47.
[11] LIU Yan, WANG Hong, ZHANG Pu, LI Yang. Accuracy Evaluation of MODIS Atmospheric Correction and Its Effects on Surface-Snow Density Extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 128-132.
[12] SUN Yuan, GU Xing-Fa, YU Tao, GAO Hai-Liang. A Study of HJ-1A CCD Image Atmospheric Correction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 6-9.
[13] DU Xin, CHEN Xue-Yang, MENG Ji-Hua, ZHANG Fei-Fei, ZHANG Miao, WU Bing-Fang. Atmospheric Correction of HJ-1 CCD Data Based on 6S Model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 22-25.
[14] ZHANG Chuan, LIU Shao-Feng, LIU Yan-Hong, PEI Xiao-Yin. The Application and Evaluation of Spectral Reconstruction of Hyperion Based on Radiative Transfer Model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 30-34.
[15] FU Qiao-Yan, MIN Xiang-Jun, PAN Zhi-qiang, QI Xue-Yong, WANG Ai-Chun. THE OPERATIONAL ATMOSPHERIC CORRECTION OF CBERS IMAGE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(1): 48-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech