Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 205-213     DOI: 10.6046/gtzyyg.2020107
|
Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach
HE Haiying1,2(), CHEN Caifen3(), CHEN Fulong1, TANG Panpan1
1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 101408, China
3. Beijing Jucai Zhenbang Enterprise Management Consultant Co., Ltd., Beijing 100038, China
Download: PDF(9096 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The cultural landscape of the Zhangjiakou Ming Great Wall is susceptible to surface deformation, making the systematic conservation of cultural landscape in this corridor quite challenging. In order to fix the methodology and application gaps of Great Wall monitoring (large-scale linear heritage) systematically, the authors applied the SBAS-InSAR technology to the time-series deformation surveillance in this pilot case study. In the procedures of InSAR data processing, an external weather model (GACOS) was firstly used to reduce the atmospheric artifacts on interferograms; moreover, a 40 m Gauss and the Goldstein filters were sequentially applied for the phase noise suppression relevant to the natural landscape. In total 67 Sentinel-1 SAR images including 33 ascending and 34 descending data acquired from May 2017 to July 2018 were collected for the line of sight (LOS) deformation calculation using the SBAS-InSAR approach. The derived deformation rates were then projected onto vertical direction for the further analysis. Afterwards, motion rate profiles of ascending and descending datasets from a typical mountain and a flat area were selected for cross-validation, resulting in the maximum and averaged root mean square errors of 9.3 mm/a and 4.0 mm/a, respectively. With considering the significance level, the result demonstrates that 79.5% of the Great Wall corridor (85.1 km totally observed) is relatively stable (with deformation rates in the range of -10 mm/a to 10 mm/a) while remaining 20.5 % shows significant motions (the maximum subsidence rate up to -64.5 mm/a) using the 10 mm/a as the threshold. This pilot study implied the applicability of the applied SBAS-InSAR approach to the synoptic deformation monitoring of large-scale linear heritage sites.

Keywords the Great Wall      SBAS-InSAR      ascending and descending      atmospheric correction     
ZTFLH:  TP79  
Corresponding Authors: CHEN Caifen     E-mail: hehy@radi.ac.cn;chencaifenhome@sohu.com
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haiying HE
Caifen CHEN
Fulong CHEN
Panpan TANG
Cite this article:   
Haiying HE,Caifen CHEN,Fulong CHEN, et al. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020107     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/205
Fig.1  Schematic diagram of test area
卫星 轨道方向 开始获取日期 截止获取日期 极化方式 数量
S1A A 20170519 20180728 VV 33
S1B D 20170520 20180729 VV 34
Tab.1  Parameters of Sentinel-1 data
Fig.2  Spatiotemporal baselines of Sentinel-1 ascending and descending InSAR data
Fig.3  Vertical deformation field of ascending and descending Great Wall corridor
Fig.4  Vertical deformation field of ascending and descending key areas adjacent to the Great Wall corridors
Fig.5  In-situ photos obtained from field campaigns
Fig.6  Cross-verification of vertical deformation of ascending and descending using profiles of Ⅰ,Ⅱ,Ⅲ and Ⅳ
剖线Ⅰ 剖线Ⅱ 剖线Ⅲ 剖线Ⅳ
升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率
-26.386 500 -36.359 664 -2.954 666 -3.787 196 -4.295 417 -2.776 092 -3.029 664 -2.478 660
-23.221 746 -30.817 969 -4.743 141 -7.881 187 -2.506 129 -2.619 370 -2.880 021 -2.698 201
-22.714 194 -30.374 685 -7.372 725 -7.107 225 -1.507 744 -2.431 923 -2.151 036 -3.522 589
-23.615 474 -30.359 094 -8.140 943 -6.869 733 -0.311 431 -2.613 713 -1.978 628 -4.144 786
-23.543 893 -29.345 527 -8.627 688 -7.422 558 -0.717 868 -3.090 406 -1.748 386 -4.782 313
-23.374 061 -29.196 741 -8.467 884 -8.232 046 -2.652 864 -2.517 831 -0.431 528 -2.531 183
-21.171 342 -27.141 972 -7.597 846 -6.272 651 -2.673 597 -2.647 359 1.146 827 1.037 039
-20.007 305 -27.036 656 -5.700 915 -3.545 717 -4.462 548 -3.822 364 -0.518 566 -1.215 172
-20.511 334 -27.782 669 -1.000 416 -2.343 803 -5.443 761 -5.075 118 -1.651 547 -1.209 820
-19.954 611 -27.064 594 -1.160 462 -2.475 457 -3.300 535 -5.246 339 -3.534 750 -2.576 534
-15.568 379 -23.739 264 -3.159 606 -2.924 525 -0.432 296 -3.413 042 -3.683 268 -3.270 100
-10.927 718 -23.326 770 -6.981 864 -3.587 688 1.056 834 -1.087 861 -3.860 244 -2.825 739
-7.685 485 -24.305 581 -9.950 955 -5.713 572 1.378 777 1.485 126 -5.101 048 -3.416 404
-1.134 007 -19.275 776 -13.391 594 -7.084 895 -1.031 696 -0.010 015 -4.242 044 -3.341 172
-5.592 829 -19.692 338 -8.871 876 -5.414 864 -2.021 653 -1.197 983 -3.637 222 -1.908 386
-6.037 808 -19.051 580 -6.126 122 -1.374 303 -2.796 964 -2.629 911
-8.260 981 -11.274 084 -7.283 288 -0.174 217 -3.379 837 -3.441 530
-9.759 655 -7.831 146 -10.272 661 -3.401 144 -3.132 522 -3.763 355
-6.249 528 -7.195 139 -11.418 052 -7.455 137 -2.651 378 -4.778 665
-3.935 778 -6.614 104 -9.772 344 -5.020 131 -0.793 225 -6.553 204
-6.512 675 -4.355 627 -1.774 932 -2.209 514
-7.287 250 -4.826 895
-9.053 184 -4.979 769
-9.107 149 -4.379 564
-8.193 869 -5.001 902
剖线Ⅰ 剖线Ⅱ 剖线Ⅲ 剖线Ⅳ
升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率 升轨沉降速率 降轨沉降速率
-6.870 626 -4.661 846
-5.238 107 -5.061 211
-4.095 639 -7.598 280
-6.956 030 -9.836 517
-8.646 734 -9.555 167
Tab.2  Measurements of ascending and descending vertical deformation profiles(mm·a-1)
指标 剖线Ⅰ 剖线Ⅱ 剖线Ⅲ 剖线Ⅳ
均方根误差
最大偏离度
9.3
18.1
3.4
7.1
1.9
5.8
1.4
3.0
Tab.3  Measurement indices in the cross comparison of vertical deformation profiles between ascending and descending results(mm·a-1)
Fig.7  Thematic deformation risking mapping of the Great Wall corridor
[1] 王晓轩. 张家口——中国历代长城博物馆(中国城市·张家口专版(二))[EB/OL].(2006-09-19)[2018-11-18]. http://paper.people.com.cn/rmrbhwb/html/200609/19/content_11299006.html.
url: http://paper.people.com.cn/rmrbhwb/html/200609/19/content_11299006.html
[1] Wang X X. Zhangjiakou-Great Wall Museum of Chinese History (China City·Zhangjiakou Special Edition(2))[EB/OL].(2006-09-19)[2018-11-18]. http://paper.people.com.cn/rmrbhwb/html/200609/19/content_11299006.html.
url: http://paper.people.com.cn/rmrbhwb/html/200609/19/content_11299006.html
[2] Gabriel A K, Goldstein R M, Zebker H A. Mapping small elevation changes over large areas-differential Radar interferometry[J]. Journal of Geophysical Research Solid Earth, 1989,94(B7):9183-9191.
[3] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017,46(10):1717-1733.
[3] Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1717-1733.
[4] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,40(11):2375-2383.
[5] Usai S. A least squares database approach for SAR interferometric data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(4):753-760.
[6] 许文斌, 李志伟, 丁晓利, 等. 利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J]. 地球物理学报, 2012,55(2):452-461.
[6] Xu W B, Li Z W, Ding X L, et al. Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area[J]. Chinese Journal of Geophysics, 2012,55(2):452-461.
[7] 张永红, 吴宏安, 康永辉. 京津冀地区1992—2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016,45(9):1050-1058.
[7] Zhang Y H, Wu H A, Kang Y H. Ground subsidence over Beijing-Tianjin-Hebei region during three periods of 1992 to 2014 monitored by interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(9):1050-1058.
[8] 周吕, 郭际明, 李昕, 等. 基于SBAS-InSAR的北京地区地表沉降监测与分析[J]. 大地测量与地球动力学, 2016,36(9):793-797.
[8] Zhou L, Guo J M, Li X, et al. Monitoring and analyzing on ground settlement in Beijing area based on SBAS-InSAR[J]. Journal of Geodesy and Geodynamics, 2016,36(9):793-797.
[9] 孙晓鹏, 鲁小丫, 文学虎, 等. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016,28(3):123-129.doi: 10.6046/gtzyyg.2016.03.20.
[9] Sun X P, Lu X Y, Wen X H, et al. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. Remote Sensing for Land and Resources, 2016,28(3):123-129.doi: 10.6046/gtzyyg.2016.03.20.
[10] 吴文豪. 哨兵雷达卫星TOPS模式干涉处理研究[D]. 武汉:武汉大学, 2016.
[10] Wu W H. TOPS interferometry with Sentinel-1[D]. Wuhan:Wuhan University, 2016.
[11] 陈富龙, 林珲, 程世来. 星载雷达干涉测量及时间序列分析的原理、方法与应用[M]. 北京: 科学出版社, 2013: 41-68.
[11] Chen F L, Lin H, Cheng S L. Principles,methods and applications of spaceborne Radar interferometry and time series analysis[M]. Beijing: Science Press, 2013: 41-68.
[12] 胡俊. 基于现代测量平差的InSAR三维形变估计理论与方法[D]. 长沙:中南大学, 2013.
[12] Hu J. Theory and method of estimating three-dimensional displacement with InSAR based on the modern surveying adjustment[D]. Changsha:Central South University, 2013.
[13] Fialko Y, Simons M, Agnew D. The complete (3-D) surface displacement field in the epicentral area of the 1999 MW7.1 Hector Mine Earthquake,California,from space geodetic observations[J]. Geophysical Research Letters, 2001,28(16):3063-3066.
[14] Hu J, Li Z W, Zhu J J, et al. Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending orbits[J]. Science in China Series D(Earth Sciences), 2010,53(4):550-560.
[15] 张晓博. 基于高分辨率SAR影像的城市二维时序形变建模与应用[D]. 北京:中国矿业大学(北京), 2018.
[15] Zhang X B. Modeling and application of the 2D time series deformation monitoring in urban area using high resolution SAR images[D]. Beijing:China University of Mining and Technology(Beijing), 2018.
[16] 崔喜爱, 曾琪明, 童庆禧, 等. 重轨星载InSAR测量中的大气校正方法综述[J]. 遥感技术与应用, 2014,29(1):9-17.
[16] Cui X A, Zeng Q M, Tong Q X, et al. Overview of the atmospheric correction methods in repeat-pass InSAR measurements[J]. Remote Sensing Technology and Application, 2014,29(1):9-17.
[17] 孙建霖, 杨忠杰, 马金辉. 基于大气数据的时序InSAR大气延迟误差校正方法比较[J]. 科技创新与应用, 2019(11):23-26,30.
[17] Sun J L, Yang Z J, Ma J H. Comparison of correction methods of time series InSAR atmospheric delay error based on atmospheric data[J]. Technology Innovation and Application, 2019(11):23-26,30
[18] Yu C, Penna N T, Li Z. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research(Atmospheres), 2017,122(3):2008-2025.
[19] Yu C, Li Z, Penna N T. Interferometric synthetic aperture Radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2017,204:109-121.
doi: 10.1016/j.rse.2017.10.038 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717305011
[20] 王琴, 陈蜜, 刘书军, 等. 利用升降轨道SAR数据获取DEM的试验研究[J]. 测绘通报, 2015(6):39-43.
doi: 10.13474/j.cnki.11-2246.2015.0174 url: http://tb.sinomaps.com:8081/Jwk_chtb//CN/abstract/abstract1435.shtml
[20] Wang Q, Chen M, Liu S J, et al. DEM acquisition study using raise-orbit and lower-orbit SAR data[J]. Bulletin of Surveying and Mapping, 2015(6):39-43.
[1] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[2] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[3] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[4] LUO Xuewei, XIANG Xiqiong, LYU Yadong. PS correction of InSAR time series deformation monitoring for a certain collapse in Longli County[J]. Remote Sensing for Natural Resources, 2022, 34(3): 82-87.
[5] XU Zixing, JI Min, ZHANG Guo, CHEN Zhenwei. Method for dynamic prediction of mining subsidence based on the SBAS-InSAR technology and the logistic model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 20-29.
[6] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[7] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[8] Zhenyu SHEN, Xiaohong GAO, Min TANG. Comparison and accuracy verification for atmospheric correction of SPOT6 image in high altitude complex terrain area[J]. Remote Sensing for Land & Resources, 2020, 32(1): 81-89.
[9] Dongya CHENG, Xudong LI. Comparison of change characteristics of NDVI in mountain basin before and after atmospheric correction[J]. Remote Sensing for Land & Resources, 2020, 32(1): 90-97.
[10] Ling CHEN, Li CHEN, Wei LI, Jianyu LIU. Atmospheric correction of Worldview3 image based on FLAASH model[J]. Remote Sensing for Land & Resources, 2019, 31(4): 26-31.
[11] Piyuan YI, Hanbo LI, Peng TONG, Yingjun ZHAO, Chuan ZHANG, Feng TIAN, Yongfei CHE, Wenhuan WU. Atmospheric radiation correction of airborne hyperspectral image by adding elevation factor[J]. Remote Sensing for Land & Resources, 2019, 31(2): 66-72.
[12] Bin YANG, Dan LI, Guisheng GAO, Cai CHEN, Lei WANG. Processing analysis of Sentinel-2A data and application to arid valleys extraction[J]. Remote Sensing for Land & Resources, 2018, 30(3): 128-135.
[13] SUN Xiaopeng, LU Xiaoya, WEN Xuehu, ZHEN Yan, WANG Lei. Monitoring of ground subsidence in Chengdu Plain using SBAS-InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 123-129.
[14] KONG Jinling, YANG Jing, SUN Xiaoming, YANG Shu, LIU Futian, DU Dong. Atmospheric correction and suspended sediment concentration retrieval based on multi-spectral remote sensing images: A case study of Caofeidian offshore area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 130-137.
[15] ZHANG Yue, XIAO Yu, CHANG Jingjing, LIU Jian, WANG Yaqiong, HE Chunyan, HE Bing. Effects of atmospheric correction on extracting cyanobacteria bloom information based on remote sensing indices[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech