Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (1) : 128-132     DOI: 10.6046/gtzyyg.2011.01.26
Technology Application |
Accuracy Evaluation of MODIS Atmospheric Correction and Its Effects on Surface-Snow Density Extraction
LIU Yan 1, WANG Hong 2, ZHANG Pu 1, LI Yang 1
(1.Institute of Desert Meteorology, CMA, Urumqi 830002, China; 2.Institute of Remote Sensing Applications, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)
Download: PDF(1503 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract   With Gurbantunggut desert as the study area and by using moderate resolution imaging spectrometer (MODIS) data, which is a kind of optical remote sensing data,in combination with snow reflectance spectra simultaneously measured by ASD Field Spec, the authors evaluated the correction capability of FLAASH model. Some results have been attained: ① Snow reflectance from 1st to 7th band of MODIS is similar to the simultaneously measured snow reflectivity,and the correlation coefficient of all bands is 0.82 on the whole, indicating that FLAASH can greatly enhance the capability for identifing surface features of M0DIS . ② On the basis of linear relationship between snow reflectance after correction at MODIS channel 6 and NDSI and measured snow density, a snow density remote computation model can be built by way of regression and fitting.
Keywords Point resource system      Remote sensing      Objects extraction     
: 

TP 751.1

 
Issue Date: 22 March 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Fan-qin
SUN Jian-zhong
Cite this article:   
GAO Fan-qin,SUN Jian-zhong. Accuracy Evaluation of MODIS Atmospheric Correction and Its Effects on Surface-Snow Density Extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 128-132.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.01.26     OR     https://www.gtzyyg.com/EN/Y2011/V23/I1/128
[1]黄慰军,黄镇,崔彩霞,等.新疆雪密度分布研究[J].中国农业气象,2007,28(4):383-385.
[2]黄慰军,黄镇,崔彩霞,等.新疆雪密度时空分布及其影响特征研究[J].冰川冻土,2007,29(1):66-72.
[3]Chang A T C,Foster J L,Hall D K.Nimbus-7 SMMR Derived Global Snow Cover Parameters[J].Annals of Glaciology,1987(9):39-44.
[4]车涛,李新,高峰.青藏高原雪深和雪水当量的被动微波遥感反演[J].冰川冻土,2004,26(3):363-368.
[5]SUN Zhi-wen,SHI Jian-cheng,JIANG Ling-mei.Development of Snow Depth and Snow Water Equivalent Algorithm in Western China Using Passive Microwave Remote Sensing Data[J].Advances in Earth Science,2006,21(12):1363-1369.
[6]李新,车涛.积雪被动微波遥感研究进展[J].冰川冻土,2007,29(3):487-469.
[7]史培军,陈晋.RS与GIS支持下的草地雪灾监测试验研究[J].地理学报,1996,51(4):296-305.
[8]王世杰.利用NOAA/AVHRR影像资料估算积雪量的方法探讨[J].冰川冻土,1998,20(1):68-71.
[9]周咏梅,贾生海,刘萍.利用NOAA-AVHRR资料估算积雪参量[J].气象科学,2001,21(1):117-121.
[10]延昊.NOAA 16卫星积雪识别和参数提取[J].冰川冻土,2004,6(3):369-371.
[11]梁天刚,吴彩霞,陈全功,等.北疆牧区积雪图像分类与雪深反演模型的研究[J].冰川冻土,2004,26(2):160-165.
[12]Yoram J K,Richard G K,Dorothy K H,et al.Remote Sensing of Sub-pixel Snow Cover Using 0.66 and 2.1μm Channels[J].Geophysical Research Letters,2002,29:16-20.
[13]王健,陈子丹,李文君,等.中分辨率成像光谱仪图像积雪反射特性的初步分析研究[J].冰川冻土,2000,22(2):165-169.
[14]Dorothy K H,George A R,Vincent V S.Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectrometer Data[J].Remote Sensing of Environment,1995,54:127-140.
[15]宋晓宇,王纪华,刘良云,等.基于高光谱遥感影像的大气纠正:用AVIRIS数据评价大气纠正模块FLAASH[J].遥感技术与应用,2005,20(4):393-398.
[16]李国砚,张仲元,郑艳芬,等.MODIS影像的大气校正及在太湖蓝藻监测中的应用[J].湖泊科学,2008,20(2):160-166.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech