Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (2) : 22-28     DOI: 10.6046/gtzyyg.2015.02.04
Technology and Methodology |
An atmospheric correction algorithm for hyperspectral imagery with collaborative retrieval of aerosol optical thickness and water vapor content
DIAN Yuanyong1, FANG Shenghui2, XU Yongrong1
1. College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China;
2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Download: PDF(4875 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Atmospheric correction is the basic step in quantitative retrieval of land surface parameters with hyperspectral imagery. Based on abundant spectral information in the hyperspectral image,this paper presents a new atmospheric correction algorithm for hyperspectral imagery characterized by collaborative retrieval of the aerosol optical thickness (AOT) and the water vapor content (WV). The algorithm takes into account the effects of aerosol type,AOT and WV,and uses the iteration method combined with the 6S(second simulation of the satellite signal in the solar spectrum)radiative transfer model to retrieve the atmospheric parameters and ground reflectance. This new method overcomes the weakness of the existing atmospheric correction algorithms which fail to consider the effects of both AOT and WV. Hyperion hyperspectral image data covering Wuhan City were used to verify the effectiveness of the algorithm proposed in this paper,with the results compared with those of FLAASH(fast line-of-sight atmospheric analysis of spectral hypercubes)method in ENVI and MODIS's AOT and WV products. It is shown that the proposed algorithm can better correct the effect of aerosol and water vapor in the atmosphere,and needs no additional parameters because all the inputs are taken from the image data themselves or the 6S radiative transfer model in the inversion process.

Keywords small baseline subset(SBAS)      ground subsidence      InSAR      Datong      groundwater exploitation     
:  TP751.1  
Issue Date: 02 March 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Chengsheng
LIU Yuanyuan
AO Meng
Cite this article:   
YANG Chengsheng,LIU Yuanyuan,AO Meng. An atmospheric correction algorithm for hyperspectral imagery with collaborative retrieval of aerosol optical thickness and water vapor content[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 22-28.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.02.04     OR     https://www.gtzyyg.com/EN/Y2015/V27/I2/22

[1] Barducci A,Guzzi D,Marcoionni P,et al.Algorithm for the retrieval of columnar water vapor from hyperspectral remotely sensed data[J].Applied Optics,2004,43(29):5552-5563.

[2] Li B G,Yuan H S,Feng N,et al.Comparing MODIS and AERONET aerosol optical depth over China[J].International Journal of Remote Sensing,2009,30(24):6519-6529.

[3] Levy R C,Remer L A,Dubovik O.Global aerosol optical properties and application to moderate resolution imaging spectroradiometer aerosol retrieval over land[J].Journal of Geophysical Research:Atmospheres,2007,112(D13):D13210.

[4] 夏双,阮仁宗,张月,等.气溶胶光学厚度对蓝藻水华信息提取的影响[J].国土资源遥感,2013,25(1):33-38.doi:10.6046/gtzyyg.2013.01.06. Xia S,Ruan R Z,Zhang Y,et al.Effects of aerosol optical thickness on extracting cyanbacteria bloom[J].Remote Sensing for Land and Resources,2013,25(1):33-38.doi:10.6046/gtzyyg.2013.01.06.

[5] Levy R C,Remer L A,Mattoo S,et al.Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance[J].Journal of Geophysical Research:Atmospheres,2007,112(D13):D13211.

[6] Remer L A,Kaufman Y J,Tanré D,et al.The MODIS aerosol algorithm,products,and validation[J].Journal of the Atmospheric Sciences,2005,62(4):947-973.

[7] 徐永明,覃志豪,陈爱军.基于查找表的MODIS逐像元大气校正方法研究[J].武汉大学学报:信息科学版,2010,35(8):959-962. Xu Y M,Qin Z H,Chen A J.A pixel-by-pixel atmospheric correction algorithm for MODIS data based on look-up table[J].Geomatics and Information Science of Wuhan University,2010,35(8):959-962.

[8] 赵祥,梁顺林,刘素红,等.高光谱遥感数据的改正暗目标大气校正方法研究[J].中国科学:地球科学,2007,37(12):1653-1659. Zhao X,Liang S L,Liu S H,et al.Atmospheric correction with Hyperspectral image data based on modified dark object method[J].Scientia Sinica Terrae,2007,37(12):1653-1659.

[9] 郑求根,权文婷.基于暗像元的Hyperion高光谱影像大气校正[J].光谱学与光谱分析,2010,30(10):2710-2713. Zheng Q G,Quan W T.Application of dark pixels atmospheric correction algorithm to Hyperion imageries[J].Transactions of Spectroscopy and Spectral Analysis,2010,30(10):2710-2713.

[10] 胡方超,王振会,张兵,等.遥感试验数据确定大气气溶胶类型的方法研究[J].中国激光,2009,36(2):312-317. Hu F C,Wang Z H,Zhang B,et al.Study on method for determining atmospheric aerosol type using remote sensing experimental data[J].Chinese Journal of Lasers,2009,36(2):312-317.

[11] 唐洪钊,晏磊,李成才,等.基于MODIS高分辨率气溶胶反演的ETM+影像大气校正[J].地理与地理信息科学,2010,26(4):12-15. Tang H Z,Yan L,Li C C,et al.Atmospheric correction for ETM+ imagery based on high resolution aerosol optical depth retrieved from MODIS data[J].Transactions of Geography and Geo-Information Science,2010,26(4):12-15.

[12] 袁金国,牛铮,王锡平.基于FLAASH的Hyperion高光谱影像大气校正[J].光谱学与光谱分析,2009,29(5):1181-1185. Yuan J G,Niu Z,Wang X P.Atmospheric correction of Hyperion hyperspectral image based on FLAASH[J].Transactions of Spectroscopy and Spectral Analysis,2009,29(5):1181-1185.

[13] Liang S L,Fang H L.An improved atmospheric correction algorithm for hyperspectral remotely sensed imagery[J].Geoscience and Remote Sensing Letters,IEEE,2004,1(2):112-117.

[14] 程晨,陈健,李鑫慧.基于TM图像的南京市气溶胶光学厚度反演[J].国土资源遥感,2013,25(3):90-96.doi:10.6046/gtzyyg.2013.03.16. Cheng C,Chen J,Li X H.Retrieving aerosol optical depth over Nanjing City based on TM image[J].Remote Sensing for Land and Resources,2013,25(3):90-96.doi:10.6046/gtzyyg.2013.03.16.

[15] 杨磊,潘志强,傅俏燕,等.资源三号卫星多光谱数据的大气校正研究[J].光谱学与光谱分析,2013,33(7):1903-1907. Yang L,Pan Z Q,Fu Q Y,et al.Research on the atmospheric correction for ZY-3 MUX image[J].Spectroscopy and Spectral Analysis,2013,33(7):1903-1907.

[16] 方莉,余涛,顾行发,等.北京地区HJ-1卫星CCD数据的气溶胶反演及在大气校正中的应用[J].遥感学报,2013,17(1):151-164. Fang L,Yu T,Gu X F,et al.Aerosol retrieval and atmospheric correction of HJ-1 CCD data over Beijing[J].Journal of Remote Sensing,2013,17(1):151-164.

[17] 杨贵军,黄文江,刘三超,等.环境减灾卫星高光谱数据大气校正模型及验证[J].北京大学学报:自然科学版,2010,46(5):821-828. Yang G J,Huang W J,Liu S C,et al.Research on modeling and validating of atmospheric correction for HJ-1A hyperspectral imager data[J].Transactions of Peking University:Natural Science Edition,2010,46(5):821-828.

[18] Kaufman Y J,Gao B C.Remote sensing of water vapor in the near IR from EOS/MODIS[J].IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):871-884.

[19] Gao B C,Kaufman Y J.Water vapor retrievals using moderate resolution imaging spectroradiometer(MODIS)near-infrared channels[J].Journal of Geophysical Research:Atmospheres,2003,108(D13):4389.

[20] 姜立鹏,覃志豪,谢雯.针对MODIS近红外数据反演大气水汽含量研究[J].国土资源遥感,2006,18(3):5-9.doi:10.6046/gtzyyg.2006.03.02. Jiang L P,Qin Z H,Xie W.Retrieving atmospheric water vapor from MODIS near infrared data[J].Remote Sensing for Land and Resources,2006,18(3):5-9.doi:10.6046/gtzyyg.2006.03.02.

[21] 周春艳,柳钦火,唐勇.MODIS气溶胶C004、C005产品的对比分析及其在中国北方地区的适用性评价[J].遥感学报,2009,13(5):863-872. Zhou C Y,Liu Q H,Tang Y.Comparison between MODIS aerosol product C004 and C005 and evaluation of their applicability in the north of China[J].Transactions of Journal of Remote Sensing,2009,13(5):863-872.

[22] 佃袁勇.高光谱数据反演植被信息的研究[D].武汉:武汉大学,2011. Dian Y Y.Inversion Vegetation Information Based on Hyperspectral Remote Sensing Data[D].Wuhan:Wuhan University,2011.

[23] Laurent V C E,Verhoef W,Clevers J G P W,et al.Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models[J].Remote Sensing of Environment,2011,115(4):1043-1052.

[24] 陈新芳,陈镜明,安树青,等.不同大气校正方法对森林叶面积指数遥感估算影响的比较[J].生态学杂志,2006,25(7):769-773. Chen X F,Chen J M,An S Q,et al.Comparison of different atmospheric correction models in their effects on Landsat TM estimation of forest leaf area index[J].Chinese Journal of Ecology,2006,25(7):769-773.

[25] Vermote E F,Tanré D,DeuzéJ L,et al.Second simulation of the satellite signal in the solar spectrum,6S:An overview[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):675-686.

[1] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[2] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
[3] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[4] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[5] ZHANG Teng, XIE Shuai, HUANG Bo, FAN Jinghui, CHEN Jianping, TONG Liqiang. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 213-219.
[6] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[7] YU Hairuo, GONG Huili, CHEN Beibei, ZHOU Chaofan. Emerging risks and the prospect of urban underground space security based on InSAR-GRACE satellite under the new hydrological background[J]. Remote Sensing for Land & Resources, 2020, 32(4): 16-22.
[8] ZHANG Ling, LIU Bin, GE Daqing, GUO Xiaofang. Detecting tiny differential deformation of Tangshan urban active fault using multi-source SAR data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 114-120.
[9] Mao ZHU, Tiyan SHEN, Song HUANG, Shujian BAI, Chunqin GE, Qiong HU. Research on applications of InSAR technology to the deformation monitoring of buildings along the subway[J]. Remote Sensing for Land & Resources, 2019, 31(2): 196-203.
[10] Zhenlin WANG, Mingsheng LIAO, Lu ZHANG, Heng LUO, Jie DONG. Detecting and characterizing deformations of the left bank slope near the Jinping hydropower station with time series Sentinel-1 data[J]. Remote Sensing for Land & Resources, 2019, 31(2): 204-209.
[11] Zechao BAI, Baocun WANG, Guowang JIN, Qing XU, Hongmin ZHANG, Hui LIU. Applicability analysis of ground deformation monitoring in mining area by Sentinel - 1A data[J]. Remote Sensing for Land & Resources, 2019, 31(2): 210-217.
[12] Nianqin WANG, Dejing QIAO, Xiyou FU. An analysis of the influence of filtering parameter on the performance of Goldstein InSAR interfergram filter[J]. Remote Sensing for Land & Resources, 2019, 31(1): 117-124.
[13] Dong WANG, Fengbing LAI, Mengyu CHEN, Shujiang CHEN, Tiecheng HUANG, Xiang JIA. Research on coseismic deformation in Ukraine River Valley of Tianshan Mountains based on InSAR technology[J]. Remote Sensing for Land & Resources, 2019, 31(1): 187-194.
[14] Xiaobo ZHANG, Xuesheng ZHAO, Daqing GE, Bin LIU, Ling ZHANG, Man LI, Yan WANG. Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique[J]. Remote Sensing for Land & Resources, 2018, 30(4): 200-205.
[15] Juan XUE, Linfeng YU, Qinan LIN, Guang LIU, Huaguo HUANG. Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest[J]. Remote Sensing for Land & Resources, 2018, 30(4): 108-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech