Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2005, Vol. 17 Issue (3) : 10-13     DOI: 10.6046/gtzyyg.2005.03.03
Technology and Methodology |
A QUANTITATIVE STUDY OF THE RELATIONSHIP
BETWEEN URBAN VEGETATION AND URBAN HEAT ISLAND
 MA Xue-Mei, ZHANG You-Jing, HUANG Hao
Hohai University,  Nanjing 210098,  China
Download: PDF(498 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the rapid urbanization, problems caused by heat-island effect have become more and more serious. It is necessary to make rapid and effective monitoring of the distribution of heat islands in cities. In this paper, the Landsat7 ETM+ image of Nanjing was investigated as an example. A correlation model was built between ground temperature and image brightness of TM6, and in this way, the distribution of temperatures in Nanjing was obtained. The urban vegetation can be classified into forest, interspersed tree and herbaceous plant based on the NDVI value. At the same time, the other ground objects can be classified by supervised classification. In addition, the authors probed into the correlation coefficient between the ground covers and the temperature distribution from the angle of fragmentation degree. It can be concluded that different fragmentation degrees of urban greening exert different effects on the temperature of ground surface.

: 

 

 
  TP 79: P 423.7

 
Issue Date: 30 July 2009
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
MA Xue-Mei, ZHANG You-Jing, HUANG Hao. A QUANTITATIVE STUDY OF THE RELATIONSHIP
BETWEEN URBAN VEGETATION AND URBAN HEAT ISLAND[J]. REMOTE SENSING FOR LAND & RESOURCES,2005, 17(3): 10-13.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2005.03.03     OR     https://www.gtzyyg.com/EN/Y2005/V17/I3/10
[1] YANG Li-Juan, WU Sheng-Li, ZHANG Zhong-Jun.
A Model Analysis Using a Combined Active/Passive Microwave Remote Sensing Approach for Soil Moisture Retrieval
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 53-58.
[2] LIN Ting, LIU Xiang-Nan, TAN Zheng. Zn Contamination Monitoring Model of Rice Based on ICA and Hyperspectral Index[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 59-64.
[3] YANG Shu-Wen, LI Ming-Yong, LIU Tao, SUN Jian-Guo, DUAN Huan-E. A Method of Alluvial Fan Automatic Extraction from TM Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 65-69.
[4] DIAO Hai, ZHANG Da, DI Yong-Jun, WANG Zhen, WANG Hao-Ran, XIONG Guang-Qiang.
The Extraction of Alteration Anomalies from ASTER Data Based on Principal Component Analysis and Fractal Model
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 75-80.
[5] HUANG Miao-Fen, MAO Zhi-Hua, XING Xu-Feng, SUN Zhong-Ping, ZHAO Zu-Long, HUANG Wei.
A Model for Water Surface Temperature Retrieval from HJ-1B/IRS Data and Its Application
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 81-86.
[6] ZHAO Yue, ZHOU Ping . An Improved K-means Algorithm for Remote Sensing Classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 87-90.
[7] LI Zhi-Feng, ZHU Gu-Chang, ZHANG Jian-Guo, LIU Huan, HU Xing-Hua.
The Extraction and Analysis of Iron Alteration Information Based on SPOT Data for Mineral Prediction:A Case Study of the Longnan Gold Ore District
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 91-97.
[8] MENG Dan, ZHANG Zhi, FENG Wen.   The Risk Analysis of Solid Waste of the Fujawu Copper Ore District Based on GeoEye-1 and DEM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 130-134.
[9] LV Feng-Hua, SHU Ning, TAO Jian-Bin, FU Jing.
Variable Step Size-Based Estimation of Fractal Dimension for Spectral Response Curve
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 37-41.
[10] GAO Jian-Yang. The Application of the Hypeion Hyper-spectral Image to the Zhongteng
Cu-Mo Deposit in Pinghe County of Fujian Province
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 87-90.
[11] DENG Ji-Qiu, XIE Yang, ZHANG Bao-Yi, MAO Xian-Cheng. The Extraction of the Manganese Mineralization Alteration Information from the ETM+ Image and Ore Prognosis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 102-105.
[12] DENG Rui, HUANG Jing-Feng. The Monitoring of Landslide and Debris Flow Caused by Typhoon
Morakot Based on HJ-1 Images
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 106-109.
[13] MA Long. The Evaluation of NASA MODIS Sea Ice Products: a Case Study of Sea Ice in Liaodong Bay[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 115-117.
[14] FENG Yong-Jiu, HAN Zhen. RS and GIS Derived Spatio-temporal Evolution of Water Landscape in Coastal Areas: a Case Study of Shanghai Section on the Northern Bank of Hangzhou Bay[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 123-127.
[15] ZHANG Guo, PAN Hong-Bo, JIANG Wan-Shou, QIN Xu-Wen. Epipolar Resampling and Epipolar Geometry Reconstruction of Linear Array Scanner Scenes Based on RPC Model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech