Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (1) : 37-41     DOI: 10.6046/gtzyyg.2011.01.07
Technology and Methodology |

Variable Step Size-Based Estimation of Fractal Dimension for Spectral Response Curve
LV Feng-hua 1, SHU Ning 1, TAO Jian-bin 2, FU Jing 1
(1.School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China; 2.State Key Laboratory
of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China)
Download: PDF(859 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract   This paper proposes an algorithm based on the variable step estimation of fractal dimension for spectral response curve of hyperspectral image. The algorithm carries out sampling on the spectral response curve at different sampling rates, computes the differential value between two consecutive points, and then counts the total sum of differential values about these sampling points. Finally, the fractal dimension is calculated by using the least squares method. To improve computation efficiency, the algorithm divides the hyperspectral image into several parts by using the multi-thread technology and then estimates the fractal dimension by the parallel computation of the polynuclear computer. Experimental results indicate that the algorithm is effective in that it solves the problem of computational inefficiency, low-fidelity, and weak separability in the algorithm of grid and step.
Keywords Plantation protection      Prewarning      Prewarning information system      GIS     
: 

 

 
  TP 75

 
Issue Date: 22 March 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
LV Feng-Hua, SHU Ning, TAO Jian-Bin, FU Jing.
Variable Step Size-Based Estimation of Fractal Dimension for Spectral Response Curve[J]. REMOTE SENSING FOR LAND & RESOURCES,2011, 23(1): 37-41.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.01.07     OR     https://www.gtzyyg.com/EN/Y2011/V23/I1/37
[1]张良培,张立福.高光谱遥感[M].武汉:武汉大学出版社,2005.
[2]苏俊英.分形测度在高光谱遥感影像中的应用方法研究[D].武汉:武汉大学,2008.
[3]李水根,吴纪桃.分形与小波[M].北京:科学出版社,2002.
[4]王桥,吴纪桃.地图上曲线长度归算的分形方法研究[J].武测科技,1996,3:5-7.
[5]姜志强.分形理论应用研究若干问题及现状与前景分析[J].吉林大学学报,2004,22(1):57-61.
[6]杜华强,赵宪文,范文义.分形维数作为高光谱遥感数据波段选择的一个指标[J].遥感技术与应用,2004,19(1):5-9.
[7]周子勇,李朝阳.高光谱遥感数据光谱曲线分形特征研究[J].中北大学学报,2005,26(6):451-454.
[8]舒宁,苏俊英.高光谱影像光谱响应曲线分维计算[J].遥感应用,2009,1:23-26.
[9]连石柱.曲线分形维数的数值分析方法及应用[J].计算机工程与设计,1998,19(1):35-41.
[10]张季如,朱瑞赓,祝文化.用粒径的数量分布表征的土壤分形特征[J].水利学报,2004,25(4):1-7.
[11]舒宁.卫星遥感影像纹理分析与分形分维方法[J].武汉测绘科技大学学报,1998,23(4):370-373.
[12]Tzeng Y C,Fan K T,Su Y J,et al.A Parallel Differential Box Counting Algorithm Applied to Hyeperspectral Image Classifications[J].IEEE GeoScience and Remote Sensing Letters,2009,5:216-219.
[13]Charles R T,Timothy R M,David J G.Suboptimal Minimum Cluster Volume Cover-Based Method for Measuring Fractal Dimension [J].IEEE Transactions on Geoscience and Remote Sensing,2003,25(1):32-41.
[14]Samia H.Measure of the Long-Range Persistence of Solar Irradiance Signals Using The Fractal Dimension[C]∥IEEE Internal Conference on Signal Processing and its Applications,2007:1-4.
[15]Georgia E P,Periklis K,Damianos S,et al.Comparison of Fractal Dimension Estimation Algorithms for Epileptic Seizure Onset Detection[C]//IEEE International Conference on Bioinformatics and BioEngineering,2008:1-6.
[1] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[2] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[5] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[6] ZHAO Longxian, DAI Jingjing, ZHAO Yuanyi, JIANG Qi, LIU Tingyue, FU Minghai. A study of mine site selection of the Duolong ore concentration area in Tibet based on RS and GIS technology[J]. Remote Sensing for Land & Resources, 2021, 33(2): 182-191.
[7] MIAO Miao, XIE Xiaoping. Spatial-temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS[J]. Remote Sensing for Land & Resources, 2021, 33(2): 237-247.
[8] ZHANG Mengsheng, YANG Shuwen, JIA Xin, ZANG Liri. An automatic registration algorithm for remote sensing images based on grid index[J]. Remote Sensing for Land & Resources, 2021, 33(1): 123-128.
[9] YAO Kun, ZHANG Cunjie, HE Lei, LI Yuxia, LI Xiaoju. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land & Resources, 2020, 32(4): 199-208.
[10] Yongquan WANG, Qingquan LI, Chisheng WANG, Jiasong ZHU, Xinyu WANG. Tethered UAVs-based applications in emergency surveying and mapping[J]. Remote Sensing for Land & Resources, 2020, 32(1): 1-6.
[11] Renbo SONG, Yuxin ZHU, Shangshan DING, Qiaoning HE, Xiyuan WANG, Yuexiang WANG. An automatic method for extracting skeleton lines from arbitrary polygons based on GIS spatial analysis[J]. Remote Sensing for Land & Resources, 2020, 32(1): 51-59.
[12] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[13] Xuanchi CHEN, Rong CHEN, Yufeng WU, Yueyue WANG. Research on the geological background of tea planting in Duyun City based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 224-231.
[14] Zhaorong MEI, Yunju LI, Xiang KANG, Shanbao WEI, Jianjun PAN. Temporal and spatial evolution in landscape pattern of mining site area based on moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(4): 60-68.
[15] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech