Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (4) : 92-99     DOI: 10.6046/gtzyyg.2011.04.18
Technology Application |
An Analysis of Changes of Urban Impervious Surface Area Based on HJ-1 Multispectral Images and V-I-S Model
SHAN Dan-dan, DU Pei-jun, XIA Jun-shi, LIU Si-cong
Key Laboratory for Land Environment and Disaster Monitoring of State Bureau of Surveying and Mapping, China University of Mining and Technology, Xuzhou 221116, China
Download: PDF(3402 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to promote the application of the remote sensing data of HJ-1A/1B small satellite to urbanization monitoring,the authors selected Xuzhou City as the study area and chose HJ-1A/1B multispectral remote sensing images acquired in 2008 and 2010 as the data sources. After mixed pixel decomposition,the urban impervious surfaces were extracted by Linear Spectral Mixture Model (LSMM),Multiple Layer Perceptron (MLP) and Self-organizing Map (SOM) on the basis of V-I-S model. A comparison of the three methods through accuracy analysis shows that MLP is suitable for estimating the abundance of impervious surface area (ISA)from HJ-1 A/1B data, and ISA can clearly reflect the trends of urbanization.

Keywords Satellite remote sensing      Agricultural non-point source      Pollution assessment      Application analysis     
:  TP 75  
Issue Date: 16 December 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Qiang
HU Yong
GONG Cai-lan
Cite this article:   
CHEN Qiang,HU Yong,GONG Cai-lan. An Analysis of Changes of Urban Impervious Surface Area Based on HJ-1 Multispectral Images and V-I-S Model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 92-99.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.04.18     OR     https://www.gtzyyg.com/EN/Y2011/V23/I4/92



[1] Ridd M K.Exploring a V-I-S(Vegetation-Impervious Surface-Soil)Model for Urban Ecosystem Analysis Through Remote Sensing:Comparative Anatomy for Cities[J].International Journal of Remote Sensing,1995,16(12):2165-2185.



[2] Carlson T N,Arthur S T.The Impact of Land Use-Land Cover Changes Due to Urbanization on Surface Microclimate and Hydrology:a Satellite Perspective[J].Global and Planetary Change,2000,25(1/2):49-65.



[3] Wu C S,Murray A T.Estimating Impervious Surface Distribution by Spectral Mixture Analysis[J].Remote Sensing of Environment,2003,84(4):493-505.



[4] Weng Q H,Hu X F.Medium Spatial Resolution Satellite Imagery for Estimating and Mapping Urban Impervious Surfaces Using LSMA and ANN[J].Geoscience and Remote Sensing,2008,46(8):2397-2406.



[5] Lu D,Hetrick S,Moran E.Impervious Surface Mapping with QuickBird Imagery[J].International Journal of Remote Sensing,2011,32(9):2519-2533.



[6] Lu D S,Weng Q H.Extraction of Urban Impervious Surface from an IKONOS Image[J].International Journal of Remote Sensing,2009,30(5):1297-1311.



[7] 岳文泽,吴次芳.基于混合光谱分解的城市不透水面分布估算[J].遥感学报,2007,11(6):914-922.



[8] 李彩丽,都金康,左天惠.基于高分辨率遥感影像的不透水面信息提取方法研究[J].遥感信息,2009(5):36-40.



[9] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:328-334.



[10] 周纪,陈云浩,张锦水,等.北京市不透水层覆盖度遥感估算[J].国土资源遥感,2007(3):13-17.



[11] Rumelhart D E,Hinton G E,Williams R J.Learning Representations by Back-Propagating Errors(in Parallel Distributed Processing:Explorations in the Microstructure of Cognition)[M].Massachusetts:MIT Press,1986:318-362.



[12] 骆剑承,周成虎,杨艳.人工神经网络遥感影像分类模型及其与知识集成方法研究[J].遥感学报,2001,5(2):122-129.



[13] Kavzoglu T,Mather P M.The Use of Back-propagating Artificial Neural Networks in Land Cover Classification[J].International Journal of Remote Sensing,2003,24(23):4907-4938.



[14] Kohonen T.Self-Organization and Associated Memory[M].3 rd ed.NewYork:Spinger-Verlag,1989:1-65.



[15] Hu X F,Weng Q H.Estimating Impervious Surfaces from Medium Spatial Resolution Imagery Using the Self-organizing Map and Multi-layer Perceptron Neural Networks[J].Remote Sensing of Environment,2009,113(10):2089-2102.



[16] McFeeters S K.The Use of the Normalized Difference Water Index(NDWI) in the Delineation of Open Water Features[J].International Journal of Remote Sensing,1996,17(7):1425-1432.



[17] 李传荣,贾媛媛,胡坚,等.HJ-1光学卫星遥感应用前景分析[J].国土资源遥感,2008(3):1-3.

[1] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[2] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[3] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[4] LI Genjun, YANG Xuesong, ZHANG Xing, LI Xiaomin, LI Delin, DU Cheng. Application and analysis of ZY1-02D hyperspectral data in geological and mineral survey[J]. Remote Sensing for Land & Resources, 2021, 33(2): 134-140.
[5] Hailing GU, Chao CHEN, Ying LU, Yanli CHU. Construction of regional economic development model based on satellite remote sensing technology[J]. Remote Sensing for Land & Resources, 2020, 32(2): 226-232.
[6] Kaiduan ZHENG, Jian CHEN, Jie ZHOU, Shaoxin GAO. Research on monitoring of a severe haze pollution over Yangtze River Delta based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(1): 224-232.
[7] YANG Rujun, XIE Guoxue. A discussion on domestic satellite data in land and resources supervision:Taking Guangxi Zhuang Autonomous Region as example[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 52-57.
[8] CHEN Guoqian, ZHU Cunxiong, XIAO Jianshe, XIAO Ruixiang. Dynamic monitoring technology of Qinghai alpine grassland fire in spring based on multi-source satellite remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 185-189.
[9] CAO Yongxing, XUE Zhihang. Review of the urban aerosol retrieval research based on high-resolution images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 1-6.
[10] ZHENG Zongsheng, ZHOU Yunxuan, TIAN Bo, WANG Jian, LIU Zhiguo. Effects of vegetation on the dynamic of tidal creeks based on quantitative satellite remote sensing:A case study of Dongtan in Chongming[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 117-124.
[11] YE Fa-wang, LIU De-chang. Application of High Resolution Satellite Remote Sensing Technology in Identification and Analysis of the Uranium Mineralization Bleached Alteration[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 117-123.
[12] WU Xiao-Bo, YANG Liao, SHEN Jin-Xiang, WANG Jie. Car Detection by Using High Resolution Remote Sensing Image Based on Background Iterative Search[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 46-51.
[13] CHEN Qiang, HU Yong, GONG Cai-lan. Analysis of Satellite Remote Sensing Technology in the Evaluation of Agricultural Non-point Source Pollution[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 1-5.
[14] GAN Fu-Ping, YOU Shu-Cheng, QIU Zhen-Ge, YU Hai-Yang. THE SATELLITE REMOTE SENSING EVALUATION SYSTEM FOR
LAND AND RESOURCES
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(1): 7-12.
[15] YANG Ding-Tian, PAN De-Lu. PROGRESS IN THE RESEARCH ON CYANOBACTERIA REMOTE SENSING[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech