Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (3) : 117-124     DOI: 10.6046/gtzyyg.2014.03.19
Technology Application |
Effects of vegetation on the dynamic of tidal creeks based on quantitative satellite remote sensing:A case study of Dongtan in Chongming
ZHENG Zongsheng1,2, ZHOU Yunxuan2, TIAN Bo2, WANG Jian1, LIU Zhiguo3
1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China;
2. Institute for Digital Ocean Research of Marine Science Institute, Shanghai Ocean University, Shanghai 201306, China;
3. East Sea Information Center, State Oceanic Administration, Shanghai 200137, China
Download: PDF(4186 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Tidal channels, vegetation types and FVC (fractional vegetation cover) were extracted from high resolution aerial images according to the field measurement. Combined with multi-temporal satellite images and numerical ocean model, the authors employed the waterline and the width-to-depth ratio methods to inverse the tide creek bottom elevation, with which the Dongtan 3D terrain of Chongming was constructed. The effects of vegetation on tidal creeks were analyzed and some conclusions were reached: 1 The root mean square error between the tidal channel calculation and the measured result is 0.545 m at Dongtan of Chongming, and the accuracy is higher at high tide beach than at the low tidal beach; 2 From low to high tide flat, tidal channel depth increases first and then decreases along the longitudinal profile. The shallow tidal creek at the high tidal flat results from the weakness of water dynamics and beach consolidation by the vegetation roots, where downward erosion is inhibited. On the other hand, tidal channel becomes wide and shallow at the low tidal flat owing to lateral erosion without vegetation cover and weak hydrodynamics; 3 Tidal channel depth is deep in the south and shallow in the south. The Dongtan tidal channel density and vegetation coverage show significant negative correlation (r=0.560 4, p<0.02), and tidal channel length has a significant corresponding relation with vegetation types. Tidal channel length is longer in Spartina alterniflora and reed communities than in Scirpus mariqueter areas. Tidal creeks are undeveloped in the tidal flat with high density vegetation coverage.
Keywords land reclamation      remote sensing monitoring      hyperspectral remote sensing      ecological restoration     
:  TP737.1  
Issue Date: 01 July 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Shulin
BI Yinli
Cite this article:   
CHEN Shulin,BI Yinli. Effects of vegetation on the dynamic of tidal creeks based on quantitative satellite remote sensing:A case study of Dongtan in Chongming[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 117-124.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.03.19     OR     https://www.gtzyyg.com/EN/Y2014/V26/I3/117
[1] 张忍顺,王雪瑜.江苏省淤泥质海岸潮沟系统[J].地理学报,1991,46(2):195-206. Zhang R S,Wang X Y.Tidal creek system on tidal mud flat of Jiangsu Province[J].Acta Geographica Sinica,1991,46(2):195-206.
[2] 时钟,陈吉余,虞志英.中国淤泥质潮滩沉积研究的进展[J].地球科学进展,1996,11(6):555-562. Shi Z,Chen J Y,Yu Z Y.Sedimentation on the intertidal mudflat in China:An overview[J].Advance in Earth Sciences,1996,11(6):555-562.
[3] 吴晓东,高抒.长江口潮间带九段沙浅滩潮水沟形态分析[J].海洋学报,2012,34(6):126-132. Wu X D,Gao S.A morphological analysis of tidal creek network patterns on the Jiuduansha Shoal in the Changjiang Estuary[J].Acta Oceanologica Sinica,2012,34(6):126-132.
[4] Novakowski K I.Geomorphic analysis of tidal creek networks[J].Water Resources Research,2004,40(5):1-13.
[5] Vandenbruwaene W,Meire P,Temmerman S.Formation and evolution of a tidal channel network within a constructed tidal marsh[J].Geomorphology,2012,151-152:114-125.
[6] Allen J R L.Morphodynamics of Holocene salt marshes:A review sketch from the Atlantic and Southern North Sea coasts of Europe[J].Quaternary Science Reviews,2000,19(12):1155-1231.
[7] Davidson-Arnott R G D,Proosdij D,Ollerhead J.Hydrodynamics and sedimentation in salt marshes:Examples from a macrotidal marsh,Bay of Fundy[J].Geomorphology,2002,48(1/3):209-231.
[8] 沈永明,张忍顺,王艳红.互花米草盐沼潮沟地貌特征[J].地理研究,2003,22(4):520-527. Shen Y M,Zhang R S,Wang Y H.The tidal creek character in salt marsh of spartina alterniflora loisel on strong tide coast[J].Geographical Research,2003,22(4):520-527.
[9] Fruergaard M,Andersen T J,Nielsen L H,et al.Punctuated sediment record resulting from channel migration in a shallow sand-dominated micro-tidal lagoon,Northern Wadden Sea,Denmark[J].Marine Geology,2011,280(1/4):91-104.
[10] Bryce S,Larcombe P,Ridd P V.Hydrodynamic and geomorphological controls on suspended sediment transport in mangrove creek systems,a case study:Cocoa Creek,Townsville,Australia[J].Estuarine,Coastal and Shelf Science,2003,56(3/4):415-431.
[11] Shi Z,Lamb H F,Collin R L.Geomorphic change of saltmarsh tidal creek networks in the Dyfi Estuary,Wales[J].Marine Geology,1995,128(1):73-83.
[12] Garofalo D.The influence of wetland vegetation on tidal stream channel migration and morphology[J]. Estuaries,1980,3(4):258-270.
[13] Pethick J S.Long-term accretion rates on tidal salt marshes[J].Journal of Sedimentary Petrology,1981,51(2):571-577.
[14] Yang S L,Ding P X,Chen S L.Changes in progradation rate of the tidal flats at the mouth of the Changjiang(Yangtze)River,China[J].Geomorphology,2001,38(1/2):167-180.
[15] Mason D C,Davenport I J,Flather R A.Interpolation of an intertidal digital elevation model from heighted shorelines:A case study in the Western Wash[J].Estuarine,Coastal and Shelf Science,1997,45(5):599-612.
[16] Mason D C,Davenport I J,Flather R A,et al.Cover A digital elevation model of the inter-tidal areas of the Wash,England,produced by the waterline method[J].International Journal of Remote Sensing,1998,19(8):1455-1460.
[17] 韩震,郭永飞,李睿,等.长江口淤泥质潮滩环形水边线信息提取方法研究[J].国土资源遥感,2010,22(4):64-66. Han Z,Guo Y F,Li R,et al.Research on the method for ring waterside line information extraction from mudflat in the Yangtze River Estuary[J].Remote Sensing for Land and Resources,2010,22(4):64-66.
[18] 郑宗生,周云轩,沈芳,等.基于DTM的水边线遥感信息提取方法[J].国土资源遥感,2007,19(2):56-59. Zheng Z S,Zhou Y X,Shen F,et al.Waterline extraction from remotely sensed images with DTM[J].Remote Sensing for Land and Resources,2007,19(2):56-59.
[19] 郑宗生,周云轩,田波,等.基于数字海图及遥感的近60年崇明东滩湿地演变分析[J].国土资源遥感,2013,25(1):130-136. Zheng Z S,Zhou Y X,Tian B,et al.Evolution analysis of Chongming Dongtan wetland in recent 60 years based on digital nautical chart and remote sensing[J].Remote Sensing for Land and Resources,2013,25(1):130-136.
[20] 高占国,张利权.盐沼植被光谱特征的间接排序识别分析[J].国土资源遥感,2006,18(2):51-56. Gao Z G,Zhang L Q.The identification of spectral characteristics of salt marsh vegetation using indirect ordination[J].Remote Sensing for Land and Resources,2006,18(2):51-56.
[21] Huang Y,Zhou Y X,Zheng Z S,et al.Two strategies for remote sensing classification accuracy improvement of salt marsh vegetation:A case study in Chongming Dongtan[C]//Qiu P H,Yiu C,Zhang H,et al.2nd International Congress on Image and Signal Processing.New York:IEEE,2009:3014-3020.
[22] Zeng X B,Dickinson R E,Walker A.Derivation and evaluation of global 1-Km fractional vegetation cover data for land modeling[J].Journal of Applies Meteorology,2000,39(6):826-839.
[23] 陈勇,何中发,黎兵,等.崇明东滩潮沟发育特征及其影响因素定量分析[J].吉林大学学报:地球科学版,2013,43(1):212-219. Chen Y,He Z F,Li B,et al.Spatial distribution of tidal creeks and quantitative analysis of its driving factors in Chongming Dongtan,Shanghai[J].Journal of Jilin University:Earth Science Edition,2013,43(1):212-219.
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[3] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[4] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[5] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[6] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[7] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[8] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
[9] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[10] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[11] Xi LIU, Lina HAO, Xianhua YANG, Jie HUANG, Zhi ZHANG, Wunian YANG. Research and implementation of rapid statistical methods for mine remote sensing monitoring indicators[J]. Remote Sensing for Land & Resources, 2020, 32(2): 259-265.
[12] Jie WANG, Yaqiu YIN, Hang YU, Cunhao JIANG, Yu WAN. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 232-236.
[13] Yuling ZHAO, Jinzhong YANG, Yaqiu YIN, Hang ZHAO, Jinbao HE, Han ZHANG. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land & Resources, 2019, 31(4): 143-150.
[14] Haiping WU, Shicun HUANG. Research on new construction land information extraction based on deep learning: Innovation exploration of the national project of land use monitoring via remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 159-166.
[15] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech