Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (2) : 56-60     DOI: 10.6046/gtzyyg.2012.02.11
Technology and Methodology |
Automatic Extraction of Karst Landscape Elements Based on SPOT 5 Image
YANG Shu-wen1, XIE Fei1, FENG Guang-sheng2, LIU Tao1
1. School of Mathematics, Physics & Software Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
2. Fourth Survey and Design Institute of China Railway, Wuhan 430063, China
Download: PDF(3473 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  To study the geographical features and image features of peak-cluster, peak-forest and karst depression, this paper puts forward some remote sensing indices based on background values of remote sensing images, such as vegetation index, soil brightness index,and PC1 of principal component transformation of the image and terrain data. Meanwhile,the integrated calculation method of remote sensing indices is proposed, and the automatic extraction model of remote sensing is created. The integrated calculation method of the indices could effectively increase spectral differences between peak-cluster, peak-forest and other surface features. The gray values of peak-cluster and peak-forest are the highest in the image so as to obtain segmenting value for accurate extraction of them based on automatic selection algorithm of threshold. Based on automatic extraction model of remote sensing,this paper puts forward some information of peak-cluster and peak-forest. On such a basis,karst depression information is extracted. Experimental studies show that the method has high accuracy and efficiency of extraction.
Keywords Ningxia      miner resource      potential evaluation      structural characteristics      alteration information     
: 

TP 751.1

 
Issue Date: 03 June 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yong-ting
ZHANG Xiao-dong
LIU Zi-zeng
ZHANG Yong-jie
ZHANG Hui-juan
Cite this article:   
ZHANG Yong-ting,ZHANG Xiao-dong,LIU Zi-zeng, et al. Automatic Extraction of Karst Landscape Elements Based on SPOT 5 Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 56-60.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.02.11     OR     https://www.gtzyyg.com/EN/Y2012/V24/I2/56
[1] 刘湛省.岩溶地区铁路工程地质勘察浅探[J].西部探矿工程,2010,22(7):104-106.
[2] 曹化平,王科.铁路岩溶隧道工程地质选线研究[J].高速铁路技术,2011,2(1):31-36.
[3] 刘国珍,白惠芳,李朝阳.西南岩溶地区石漠化遥感监测特征分析[J].安徽农业科学,2010,38(16):8543-8546.
[4] 光耀华.岩溶地区工程地质研究的若干新进展概述[J].中国岩溶,1998,17(4):378-383.
[5] 童立强.西南岩溶石山地区石漠化信息自动提取技术研究[J].国土资源遥感,2003(4):35-39.
[6] Huang Q H,Cai Y L.Assessment of Karst Rocky Desertification Using the Radial Basis Function Network Model and GIS Technique:A Case Study of Guizhou Province,China[J].Environ Geol,2006,49(8):1173-1179.
[7] 况顺达,戴传固,王尚彦,等.岩溶石漠化遥感信息增强技术探讨[J].贵州地质,2009,26(1):44-48.
[8] 陈振民.环境本底值背景值基线值概念的商榷[J].河南地质,2000,18(2):158-160.
[9] 江振蓝,沙晋明,杨武年.基于GIS的福州市生态环境遥感综合评价模型[J].国土资源遥感,2004(3):46-48,60.
[10] 李洪义,史舟,沙晋明,等.基于人工神经网络的生态环境质量遥感评价[J].应用生态学报,2006,17(8):1475-1480.
[11] 江振蓝,沙晋明.植被生态环境遥感本底值研究——以福州市为例[J].福建师范大学学报:自然科学版,2008,24(4):80-85.
[12] 徐建春,赵英时,刘振华.利用遥感和GIS研究内蒙古中西部地区环境变化[J].遥感学报,2002,6(2):142-150.
[1] BU Ziqiang, BAI Linbo, ZHANG Jiayu. Spatio-temporal evolution of Ningxia urban agglomeration along the Yellow River based on nighttime light remote sensing[J]. Remote Sensing for Natural Resources, 2022, 34(1): 169-176.
[2] Qinglin TIAN, Wei PAN, Yao LI, Chuan ZHANG, Xuejiao CHEN, Zhangfa YU. Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper[J]. Remote Sensing for Land & Resources, 2019, 31(4): 41-46.
[3] Chenchao XIAO, Xiaojuan WU, Daming WANG, Yongbin CHU. Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory: A case study of Salamat Basin in Central Africa[J]. Remote Sensing for Land & Resources, 2019, 31(4): 120-127.
[4] Zhan YIN, Lijun ZHANG, Jianliang DUAN, Pei ZHANG. Improvement and application of forced invariance vegetation suppression in southern vegetation area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 82-88.
[5] KUAI Kaifu, XU Wenbin, HUANG Zhicai, LI Su. Remote sensing geological characteristics and prospecting of the BIF-type iron deposits in Pilbara Craton of Western Australia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 93-101.
[6] ZHANG Yuan, ZHANG Jielin, ZHAO Xuesheng, YUAN Bo. Extraction of mineral alteration information from core hyperspectral images based on weight of absorption peak[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 154-159.
[7] KUANG Zhong, HUANG Xinxin, KUANG Shunda, LU Zhengyan, LONG Shengqing. Distribution characteristics of remote sensing information on weak mineralization and alteration in Guizhou[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 140-147.
[8] XIA Qing, YANG Wunian, ZHAO Ni. Extraction of remote sensing alteration information of Kosrap area in northern basin-mountain coupling zone of Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 127-131.
[9] QIAN Jianping, ZHANG Yuan, ZHAO Xiaoxing, ZHAO Shaojie, LI Chengli. Extraction of linear structure and alteration information based on remote sensing image and ore-prospecting prognosis for Dongwu Banner, Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 109-117.
[10] ZHANG Yuanfei, YUAN Jiming, YANG Zian, LYU Weiyan, ZHANG Siying. Type classification of 2D scatter plot of remote sensing image based on the physical meaning and extraction of remote sensing alteration information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 57-62.
[11] WANG Dong-yin, ZHU Gu-chang, ZHANG Yuan-fei. Spatial Structure Features and Basic Statistic Parameters of Typical Ground Object Spectral Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 138-145.
[12] ZHENG Gui-xiang, CHI Tian-he, LIN Qi-zhong. Fractal Application in Lithological Classification and Alteration Extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 110-115.
[13] WANG Wei, ZHANG Shi-tao, YIN Guang-hou, XU Dong. The Application of ASTER Data to Extracting Alteration Anomaly Information in Skarn Sn Deposits: A Case Study of the Maguan-Dulong Sn Deposit in Southeast Yunnan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 155-159.
[14] ZHANG Yong-ting, ZHANG Xiao-dong, LIU Zi-zeng, ZHANG Yong-jie, ZHANG Hui-juan. The Extraction of Fault Structure and Wall Rock Alteration Remote Sensing Information in Ningxia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 132-136.
[15] ZHANG Yuan-fei, WU De-wen, YUAN Ji-ming, ZHU Gu-chang, YANG Zi-an, HU Bo. The Model and Application of Multi-level Detaching Technique of Remote Sensing Alteration Information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 6-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech