Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (2) : 138-145     DOI: 10.6046/gtzyyg.2020.02.18
|
A method for extracting alluvial fan based on DEM and remote sensing data
Kaixuan LIANG1,2, Guifang ZHANG1,2,3(), Haoran ZHANG1,2
1. School of Earth Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
2. Guangdong Provincal Key Lab of Geodynamics and Geohazards, Guangzhou 510275, China
3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai 519000, China
Download: PDF(6632 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on DEM and remote sensing data, this paper proposes a new method for extracting alluvial fan by determining the fan apex point, leading edge points and side edge points. Firstly, the fan apex point is determined by hydrological analysis. Secondly, the fan leading edge points are determined by DEM elevation fitting curve according to the obvious slope break at the boundary of alluvial fan and alluvial plain. Finally, the side edge points are interpreted by DEM elevation fitting curve and remote sensing data. Taking the eastern foot of Helan Mountain as a study case, the authors detected that the alluvial fans extracted by the proposed method are more objective and stable than visual interpretation from available studies. Moreover, this method can extract the alluvial fan more effectively under the complex condition with vegetation coverage and human activities, which is difficult for visual interpretation. The method is significant for alluvial fan extraction and also for the research on landform and sedimentary characteristics of alluvial fan.

Keywords alluvial fan      fan leading edge      fan apex      side edge      DEM      Helan Mountain     
:  TP751.1  
Corresponding Authors: Guifang ZHANG     E-mail: zhgfang@mail.sysu.edu.cn
Issue Date: 18 June 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kaixuan LIANG
Guifang ZHANG
Haoran ZHANG
Cite this article:   
Kaixuan LIANG,Guifang ZHANG,Haoran ZHANG. A method for extracting alluvial fan based on DEM and remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 138-145.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.02.18     OR     https://www.gtzyyg.com/EN/Y2020/V32/I2/138
Fig.1  Alluvial fan of predimont mountain and elevation profile
Fig.2  Technical routes of this study
Fig.3  Extraction of fan apex point
Fig.4  Extraction of fan leading edge points
Fig.5  Extraction of fanside edge points
Fig.6  Results of fan apex point,leading edge points and side edge points
Fig.7  Outline connection and smoothness of alluvial fan
Fig.8  Location and remote sensing image of test area
Fig.9  Extraction result at the eastern foot of Helan Mountains
扇名 编号 扇面积/km2 扇面宽长比 扇顶角/(°)
本文方法 文献[26] 文献[15] 本文方法 文献[26] 文献[15] 本文方法 文献[26] 文献[15]
大武口 1 56.30 54.46 0.83 1.16 72 67
鬼头沟 2 29.73 28.64 0.61 1.06 110 95
大风沟 3 20.39 23.56 1.14 1.09 125 86
汝箕沟 4 6.94 9.09 0.98 1.11 110 85
小水沟 5 6.54 7.25 1.48 1.55 115 90
大水沟 6 9.16 14.07 29.80 1.02 1.65 0.65 105 131 103
西伏沟 7 14.80 27.60 19.04 0.74 0.69 0.65 95 77 122
插旗口 8 48.90 54.32 49.07 0.95 0.79 0.82 105 108 88
贺兰口 9 25.99 32.52 25.87 0.84 0.61 0.75 142 144 143
苏峪口 10 24.62 40.26 29.55 0.56 0.51 0.48 90 87 98
黄旗口 11 32.69 33.01 31.93 0.78 0.74 0.68 142 138 153
甘沟 12 56.89 61.05 34.22 0.80 0.59 0.51 60 57 63
山咀沟 13 14.62 13.02 0.97 1.12 180 131
Tab.1  Results comparison of adopted method and visual interpretation from other two studies
Fig.10  Results comparison of three studies
Fig.11  Complex condition of Rujigou alluvial fan
[1] Drew F. Alluvial and lacustrine deposits and glacial records of the upper Indus basin[J].Geological Society of London Quaterly Journal, 1873,29:441-471.
[2] 曹伯勋. 地貌学及第四纪地质学[M]. 武汉: 中国地质大学出版社, 1995: 70-75.
[2] Cao B X. Geomorphology and quaternary geology[M]. Wuhan: China University of Geosciences Press, 1995: 70-75.
[3] 张珂. 地貌学与第四纪地质学的基本理论及应用[M]. 广州:[s.n.], 2015: 89-91.
[3] Zhang K. Fundamentals and applications of geomorphology and quaternary geology[M]. Guangzhou:[s.n], 2015: 89-91.
[4] 白毛伟, 谢小平, 陈芝聪, 等. 龙门山北东段山前涪江第四纪冲积扇地貌演化及其构造响应[J]. 沉积学报, 2017,35(1):85-92.
doi: 10.14027/j.cnki.cjxb.2017.01.009 url: http://www.cjxb.ac.cn/CN/abstract/abstract3733.shtml
[4] Bai M W, Xie X P, Chen Z C, et al. Geomorphological evolution of quaternary alluvial fans and its response to tectonic activity along the Fujiang River,northeastern Longmen Mountains[J]. Acta Sedimentologica Sinica, 2017,35(1):85-92.
doi: 10.14027/j.cnki.cjxb.2017.01.009 url: http://www.cjxb.ac.cn/CN/abstract/abstract3733.shtml
[5] Lee J H, Chough S K, Jo H R. Development of a streamflow-dominated alluvial-fan system in the southwestern margin of Gyeongsang basin(Lower Cretaceous):Implications for initial basin-fill history[J]. Geosciences Journal, 2019,23(2):189-200.
doi: 10.1007/s12303-018-0073-5 url: https://doi.org/10.1007/s12303-018-0073-5
[6] Rockwell T K, Masana E, Sharp W D, et al. Late Quaternary slip rates for the southern Elsinore fault in the Coyote Mountains,southern California from analysis of alluvial fan landforms and clast provenance,soils and U-series ages of pedogenic carbonate[J]. Geomorphology, 2019,326:68-89.
doi: 10.1016/j.geomorph.2018.02.024 url: https://linkinghub.elsevier.com/retrieve/pii/S0169555X18300813
[7] Blair T C. Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan,Death Valley,California[J]. Sedimentology, 1999,46(5):941-965.
doi: 10.1046/j.1365-3091.1999.00260.x url: http://doi.wiley.com/10.1046/j.1365-3091.1999.00260.x
[8] 莫多闻, 朱忠礼, 万林义. 贺兰山东麓冲积扇发育特征[J]. 北京大学学报(自然科学版), 1999,35(6):91-98.
[8] Mo D W, Zhu Z L, Wan L Y. The alluvial fans along the eastern foot of Helan Mountain[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1999,35(6):91-98.
[9] Blair T C, McPherson J G.Processes and forms of alluvial fans[M]. Berlin:Springer Netherlands, 2009: 413-467.
[10] Tom G, Farr O A, Chadwick.Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun Mountains,China[J]. Journal of Geophysical Research Planets, 1996,101(E10):23091-23100.
[11] 崔卫国, 穆桂金, 夏斌, 等. 玛纳斯河山麓冲积扇演变遥感研究[J].地理与地理信息科学, 2006(3):39-42.
url: http://d.wanfangdata.com.cn/Periodical_dlxygtyj200603009.aspx
[11] Chui W G, Mu G J, Xia B, et al. Evolution of alluvial fans at range-front of Tian Mountains in Manas River valley based on remote sensing technology[J].Geography and Geo-Information Science, 2006(3):39-42.
url: http://d.wanfangdata.com.cn/Periodical_dlxygtyj200603009.aspx
[12] 谢小平, 白毛伟, 陈芝聪, 等. 龙门山断裂带北东段活动断裂的遥感影像解译及构造活动性分析[J]. 国土资源遥感, 2019,31(1):237-246.doi: 10.6046/gtzyyg.2019.01.31.
[12] Xie X P, Bai M W, Chen Z C, et al. Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault[J]. Remote Sensing for Land and Resources, 2019,31(1):237-246.doi: 10.6046/gtzyyg.2019.01.31.
[13] 陈颖. 祁连山北麓洪积扇坡度特征及其控制因素分析[D]. 兰州:兰州大学, 2016.
[13] Chen Y. Characteristics and controlling factors of alluvial fan slopes in the northern piedmont of the Qilian Shan[D]. Lanzhou:Lanzhou University, 2016.
[14] 李新坡, 莫多闻, 朱忠礼. 侯马盆地冲积扇及其流域地貌发育规律[J]. 地理学报, 2006,61(3):241-248.
doi: 10.11821/xb200603002 url: http://www.geog.com.cn/CN/abstract/abstract18802.shtml
[14] Li X P, Mo D W, Zhu Z L. Development of alluvial fans and their catchments in Houma basin[J]. Acta Geographica Sinica, 2006,61(3):241-248.
doi: 10.11821/xb200603002 url: http://www.geog.com.cn/CN/abstract/abstract18802.shtml
[15] 李庶波, 张珂, 章桂芳, 等. 基于GIS技术研究贺兰山、罗山洪积扇特征与山脉抬升关系[J]. 山地学报, 2015,33(3):268-278.
[15] Li S B, Zhang K, Zhang G F, et al. The relationship between alluvial fans and mountain uplift in Helanshan and Luoshan Mountains in northwestern China based on GIS technique[J]. Mountain research, 2015,33(3):268-278.
[16] Gianluca N, Maria C Z, Iris J O, et al. Delineation of alluvial fans from digital elevation models with a GIS algorithm for the geomorphological mapping of the Earth and Mars[J]. Geomorphology, 2016,273:134-149.
doi: 10.1016/j.geomorph.2016.08.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0169555X16306997
[17] Argialas D P, Tzotos A. Automatic extraction of alluvial fans from ASTER L1 satellite data and a digital elevation model using object-oriented image [C]//Istanbul:Geomatica, 2004: 12-23.
[18] Roberts N, Cunningham D. Automated alluvial fan discrimination, quaternary fault identification,and the distribution of tectonically reactivated crust in the Gobi Altai region,southern Mongolia[J]. International Journal of Remote Sensing, 2008,29(23):6957-6969.
doi: 10.1080/01431160802220227 url: https://www.tandfonline.com/doi/full/10.1080/01431160802220227
[19] 杨树文, 刘涛, 冯光胜, 等. 利用ETM+影像自动提取河流冲积扇的方法[J]. 测绘科学, 2013,38(3):166-168.
[19] Yang S W, Liu T, Feng G S, et al. Automatic extraction method of alluvial fan based on ETM+ images[J]. Science of Surveying and Mapping, 2013,38(3):166-168.
[20] 中国科学院地理研究所经济地理研究室. 中国农业地理总论[M]. 北京: 科学出版社, 1980: 3-9.
[20] Department of Economic Geography,Institute of Geography,Chinese Academy of Sciences. General introduction of agricultural geography in China[M]. Beijing: Science Press, 1980: 3-9.
[21] Wells S G, Harvey A M. Sedimentologic and geomorphic variations in storm generated alluvial fans,Howgill Fells,northwest England[J]. Geological Society of America Bulletin, 1987,98(2):182-198.
doi: 10.1130/0016-7606(1987)98<182:SAGVIS>2.0.CO;2 url: https://pubs.geoscienceworld.org/gsabulletin/article/98/2/182-198/189939
[22] Saito K, Oguchi T. Slope of alluvial fans in humid regions of Japan,Taiwan and the Philippines[J]. Geomorphology, 2005,70:147-167.
doi: 10.1016/j.geomorph.2005.04.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0169555X05001406
[23] Harvey A, Mather A E, Stokes M. Alluvial fans:Geomorphology,sedimentology,dynamics-introduction,a review of alluvial fan research[J]. Geological Society London Special Publications, 2005,251(1):1-8.
doi: 10.1144/GSL.SP.2005.251.01.01 url: http://sp.lyellcollection.org/lookup/doi/10.1144/GSL.SP.2005.251.01.01
[24] Guerit L, Metivier F, Devauchelle O, et al. Laboratory alluvial fans in one dimension[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2014,90(2):1-8.
[25] Dechant L J, Pease P P, Tchakerian V P. Modelling alluvial fan morphology[J]. Earth Surface Processes and Landforms, 1999,24(7):641-652.
[26] 李新坡. 中国北方地区冲积扇地貌发育特征与影响因素分析[D]. 北京:北京大学, 2007.
[26] Li X P. Geomorphology and affecting factors analysis of alluvial fans in north China[D]. Beijing:Peking University, 2007.
[27] 杨景春, 李有利. 地貌学原理[M]. 北京: 北京大学出版社, 2017: 37-42.
[27] Yang J C, Li Y L. Fundamentals of geomorphology[M]. Beijing: Peking University Press, 2017: 37-42.
[28] 田明中, 程捷. 第四纪地质学与地貌学[M]. 北京: 地质出版社, 2008: 54-59.
[28] Tian M Z, Chen J. Quaternary geology and geomorphology[M]. Beijing: Geological Publishing House, 2008: 54-59.
[29] 国家地震局《鄂尔多斯周缘活动断裂系》课题组. 鄂尔多斯周缘活动断裂系[M]. 北京: 地震出版社, 1987: 20-21.
[29] The China Earthquake Administration Research Group on the Active Fault Around Erdos Basin. The active fault around Erdos basin[M]. Beijing: Earthquake Press, 1987: 20-21.
[30] 刘建辉, 张培震, 郑德文, 等. 贺兰山晚新生代隆升的剥露特征及其隆升模式[J]. 中国科学:地球科学, 2010,40(1):50-60.
[30] Liu J H, Zhang P Z, Zheng D W, et al. The feature and pattern of late Cenozoic uplift and exhumation of the Helan Shan[J]. Scientia Sinica Terrae, 2010,40(1):50-60.
[31] Darby B J, Ritts B D. Mesozoic contractional deformation in the middle of the Asian tectonic collage:The intraplate Western Ordos fold-thrust belt,China[J]. Earth and Planetary Science Letters, 2002,205(1-2):13-24.
doi: 10.1016/S0012-821X(02)01026-9 url: https://linkinghub.elsevier.com/retrieve/pii/S0012821X02010269
[32] 单鹏飞, 温晋林, 璩向宁. 贺兰山东麓新构造运动特征初探[J]. 干旱区地理, 1991,14(2):15-20.
[32] Shan P F, Wen J L, Qu X N. An approach to the characteristics of neotectonic movement in the eastern foot of Helan Mountains[J]. Arid Land Geography, 1991,14(2):15-20.
[33] 杨桄, 刘湘南. 遥感影像解译的研究现状和发展趋势[J]. 国土资源遥感, 2004,16(2):7-10,15.doi: 10.6046/gtzyyg.2004.02.02.
[33] Yang G, Liu X N. The present research condition and development trend of remotely sensed imagery interpretation[J]. Remote Sensing for Land and Resources, 2004,16(2):7-10,15.doi: 10.6046/gtzyyg.2004.02.02.
[34] Bull W B. The alluvial fan environment[J]. Progress in Physical Geography, 1977,1:222-270.
[35] Oguchi T, Ohmori H. Analysis of relationships among alluvial-fan area,source basin area,basin slope,and sediment yield[J]. Zeitschrift Fur Geomorphologie, 1994,38(4):405-420.
[1] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[2] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[3] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[4] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[5] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
[6] Zongli JIANG, Junli ZHANG, Zhen ZHANG, Shiyin LIU, Junfeng WEI, Wanqin GUO, Chuanguang ZHU, Danni HUANG. Glacier change and mass balance (1972—2011) in Ulugh Muztagh,eastern Kunlun Mountains, monitored by remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 128-136.
[7] Xiaoqi MA, Shanlong LU, Jin MA, Liping ZHU. Lake water storage estimation method based on topographic parameters: A case study of Nam Co Lake[J]. Remote Sensing for Land & Resources, 2019, 31(4): 167-173.
[8] Tao CHENG, Guangyong LI, Kai BI. Research on the geospatial correction method of water extracting products considering the characteristics of time points[J]. Remote Sensing for Land & Resources, 2019, 31(2): 96-101.
[9] Qun WANG, Jinghui FAN, Wei ZHOU, Weilin YUAN, Liqiang TONG, Zhaocheng GUO. Research on the DEM-assisted offset tracking technique applied to glaciers movement monitoring[J]. Remote Sensing for Land & Resources, 2018, 30(3): 167-173.
[10] YU Zhoulu, WANG Wenchao, RONG Yi, SHEN Zhangquan. Sub-pixel mapping of land cover using sub-pixel swapping algorithm and topographic data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 88-97.
[11] CHU Duo, DA Wa, LABA Zhuoma, XU Weixin, ZHANG Juan. An analysis of spatial-temporal distribution features of snow cover over the Tibetan Plateau based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 117-124.
[12] YU Haiyang, LUO Ling, MA Huihui, LI Hui. Application appraisal in catchment hydrological analysis based on SRTM 1 Arc-Second DEM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 138-143.
[13] SU Yuanyuan, ZHANG Jingfa, HE Zhongtai, JIANG Wenliang, JIANG Hongbo, LI Qiang. Assessment of applying ZY-3 DEM data to quantitative study of active structures[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 122-130.
[14] SUN Yafei, JIANG Liming, LIU Lin, SUN Yongling, WANG Hansheng. TanDEM-X bistatic SAR interferometry and its research progress[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 16-22.
[15] WU Fang, ZHANG Zonggui, GUO Zhaocheng, AN Zhihong, YU Kun, LI Ting. Method of deriving DEM in the mining area based on filtering of airborne LiDAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech